经验转换的线性意见池

Anthony Garratt, Timo Henckel, Shaun P. Vahey
{"title":"经验转换的线性意见池","authors":"Anthony Garratt, Timo Henckel, Shaun P. Vahey","doi":"10.2139/ssrn.3412667","DOIUrl":null,"url":null,"abstract":"Many studies have found that combining density forecasts improves predictive accuracy for macroeconomic variables. A prevalent approach known as the Linear Opinion Pool (LOP) combines forecast densities from “experts”; see, among others, Stone (1961), Geweke and Amisano (2011), Kascha and Ravazzolo (2011), Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013). Since the LOP approach averages the experts’ probabilistic assessments, the distribution of the combination generally differs from the marginal distributions of the experts. As a result, the LOP combination forecasts sometimes fail to match salient features of the sample data, including asymmetries in risk. In this paper, we propose a computationally convenient transformation for a target macroeconomic variable with an asymmetric marginal distribution. Our methodology involves a Smirnov transform to reshape the LOP combination forecasts using a nonparametric kernel-smoothed empirical cumulative distribution function. We illustrate our methodology with an application examining quarterly real-time forecasts for US inflation based on multiple output gap measures over an evaluation sample from 1990:1 to 2017:2. Our proposed methodology improves combination forecast performance by approximately 10% in terms of both the root mean squared forecast error and the continuous ranked probability score. We find that our methodology delivers a similar performance gain for the Logarithmic Opinion Pool (LogOP), a commonly-used alternative to the LOP.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Empirically-Transformed Linear Opinion Pools\",\"authors\":\"Anthony Garratt, Timo Henckel, Shaun P. Vahey\",\"doi\":\"10.2139/ssrn.3412667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies have found that combining density forecasts improves predictive accuracy for macroeconomic variables. A prevalent approach known as the Linear Opinion Pool (LOP) combines forecast densities from “experts”; see, among others, Stone (1961), Geweke and Amisano (2011), Kascha and Ravazzolo (2011), Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013). Since the LOP approach averages the experts’ probabilistic assessments, the distribution of the combination generally differs from the marginal distributions of the experts. As a result, the LOP combination forecasts sometimes fail to match salient features of the sample data, including asymmetries in risk. In this paper, we propose a computationally convenient transformation for a target macroeconomic variable with an asymmetric marginal distribution. Our methodology involves a Smirnov transform to reshape the LOP combination forecasts using a nonparametric kernel-smoothed empirical cumulative distribution function. We illustrate our methodology with an application examining quarterly real-time forecasts for US inflation based on multiple output gap measures over an evaluation sample from 1990:1 to 2017:2. Our proposed methodology improves combination forecast performance by approximately 10% in terms of both the root mean squared forecast error and the continuous ranked probability score. We find that our methodology delivers a similar performance gain for the Logarithmic Opinion Pool (LogOP), a commonly-used alternative to the LOP.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3412667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3412667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多研究发现,结合密度预测提高了对宏观经济变量的预测准确性。一种被称为线性意见池(LOP)的流行方法结合了来自“专家”的预测密度;参见Stone(1961)、Geweke和Amisano(2011)、Kascha和Ravazzolo(2011)、Ranjan和Gneiting(2010)以及Gneiting和Ranjan(2013)。由于LOP方法平均专家的概率评估,因此组合的分布通常不同于专家的边际分布。因此,LOP组合预测有时不能匹配样本数据的显著特征,包括风险的不对称性。本文提出了具有不对称边际分布的目标宏观经济变量的一种计算方便的变换。我们的方法包括使用非参数核平滑经验累积分布函数进行Smirnov变换来重塑LOP组合预测。我们通过一个应用程序来说明我们的方法,该应用程序基于1990:1至2017:2的评估样本上的多种产出缺口措施,对美国通胀进行季度实时预测。我们提出的方法在预测均方根误差和连续排序概率得分方面将组合预测性能提高了约10%。我们发现我们的方法为对数意见池(LogOP)提供了类似的性能增益,LogOP是LOP的常用替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirically-Transformed Linear Opinion Pools
Many studies have found that combining density forecasts improves predictive accuracy for macroeconomic variables. A prevalent approach known as the Linear Opinion Pool (LOP) combines forecast densities from “experts”; see, among others, Stone (1961), Geweke and Amisano (2011), Kascha and Ravazzolo (2011), Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013). Since the LOP approach averages the experts’ probabilistic assessments, the distribution of the combination generally differs from the marginal distributions of the experts. As a result, the LOP combination forecasts sometimes fail to match salient features of the sample data, including asymmetries in risk. In this paper, we propose a computationally convenient transformation for a target macroeconomic variable with an asymmetric marginal distribution. Our methodology involves a Smirnov transform to reshape the LOP combination forecasts using a nonparametric kernel-smoothed empirical cumulative distribution function. We illustrate our methodology with an application examining quarterly real-time forecasts for US inflation based on multiple output gap measures over an evaluation sample from 1990:1 to 2017:2. Our proposed methodology improves combination forecast performance by approximately 10% in terms of both the root mean squared forecast error and the continuous ranked probability score. We find that our methodology delivers a similar performance gain for the Logarithmic Opinion Pool (LogOP), a commonly-used alternative to the LOP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信