基于不变风险最小化的联合消除内在偏差和应用偏差(学生摘要)

Yuzhou Mao, Liu Yu, Yi Yang, Fan Zhou, Ting Zhong
{"title":"基于不变风险最小化的联合消除内在偏差和应用偏差(学生摘要)","authors":"Yuzhou Mao, Liu Yu, Yi Yang, Fan Zhou, Ting Zhong","doi":"10.1609/aaai.v37i13.27000","DOIUrl":null,"url":null,"abstract":"Demographic biases and social stereotypes are common in pretrained language models (PLMs), while the fine-tuning in downstream applications can also produce new biases or amplify the impact of the original biases. Existing works separate the debiasing from the fine-tuning procedure, which results in a gap between intrinsic bias and application bias. In this work, we propose a debiasing framework CauDebias to eliminate both biases, which directly combines debiasing with fine-tuning and can be applied for any PLMs in downstream tasks. We distinguish the bias-relevant (non-causal factors) and label-relevant (causal factors) parts in sentences from a causal invariant perspective. Specifically, we perform intervention on non-causal factors in different demographic groups, and then devise an invariant risk minimization loss to trade-off performance between bias mitigation and task accuracy. Experimental results on three downstream tasks show that our CauDebias can remarkably reduce biases in PLMs while minimizing the impact on downstream tasks.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"197 1","pages":"16280-16281"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Debiasing Intrinsic Bias and Application Bias Jointly via Invariant Risk Minimization (Student Abstract)\",\"authors\":\"Yuzhou Mao, Liu Yu, Yi Yang, Fan Zhou, Ting Zhong\",\"doi\":\"10.1609/aaai.v37i13.27000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demographic biases and social stereotypes are common in pretrained language models (PLMs), while the fine-tuning in downstream applications can also produce new biases or amplify the impact of the original biases. Existing works separate the debiasing from the fine-tuning procedure, which results in a gap between intrinsic bias and application bias. In this work, we propose a debiasing framework CauDebias to eliminate both biases, which directly combines debiasing with fine-tuning and can be applied for any PLMs in downstream tasks. We distinguish the bias-relevant (non-causal factors) and label-relevant (causal factors) parts in sentences from a causal invariant perspective. Specifically, we perform intervention on non-causal factors in different demographic groups, and then devise an invariant risk minimization loss to trade-off performance between bias mitigation and task accuracy. Experimental results on three downstream tasks show that our CauDebias can remarkably reduce biases in PLMs while minimizing the impact on downstream tasks.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"197 1\",\"pages\":\"16280-16281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i13.27000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.27000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人口统计偏差和社会刻板印象在预训练语言模型(PLMs)中很常见,而下游应用程序的微调也可能产生新的偏差或放大原始偏差的影响。现有的工作将去除偏置与微调过程分开,这导致了内在偏置与应用偏置之间的差距。在这项工作中,我们提出了一个去除偏置的框架CauDebias来消除这两种偏置,它直接结合了去除偏置和微调,可以应用于下游任务中的任何plm。我们从因果不变的角度区分句子中的偏差相关部分(非因果因素)和标签相关部分(因果因素)。具体而言,我们对不同人口统计群体的非因果因素进行干预,然后设计一个不变的风险最小化损失,以权衡偏差缓解和任务准确性之间的性能。三个下游任务的实验结果表明,我们的CauDebias可以显著减少plm中的偏差,同时最大限度地减少对下游任务的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Debiasing Intrinsic Bias and Application Bias Jointly via Invariant Risk Minimization (Student Abstract)
Demographic biases and social stereotypes are common in pretrained language models (PLMs), while the fine-tuning in downstream applications can also produce new biases or amplify the impact of the original biases. Existing works separate the debiasing from the fine-tuning procedure, which results in a gap between intrinsic bias and application bias. In this work, we propose a debiasing framework CauDebias to eliminate both biases, which directly combines debiasing with fine-tuning and can be applied for any PLMs in downstream tasks. We distinguish the bias-relevant (non-causal factors) and label-relevant (causal factors) parts in sentences from a causal invariant perspective. Specifically, we perform intervention on non-causal factors in different demographic groups, and then devise an invariant risk minimization loss to trade-off performance between bias mitigation and task accuracy. Experimental results on three downstream tasks show that our CauDebias can remarkably reduce biases in PLMs while minimizing the impact on downstream tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信