惯性轮倒立摆的非线性最优控制

Q2 Engineering
G. Rigatos, M. Abbaszadeh, M. Hamida
{"title":"惯性轮倒立摆的非线性最优控制","authors":"G. Rigatos, M. Abbaszadeh, M. Hamida","doi":"10.1080/23335777.2019.1678199","DOIUrl":null,"url":null,"abstract":"ABSTRACT Due to underactuation and nonlinearities, the control of the inertia wheel inverted pendulum is a non-trivial problem. The article proposes a nonlinear optimal control approach for the inertia wheel inverted pendulum. First, the dynamic model of the pendulum undergoes approximate linearisation around a temporary operating point which is recomputed at each time-step of the control method. The linearisation procedure makes use of first-order Taylor series expansion and requires the computation of the system’s Jacobian matrices. For the approximately linearised model of the pendulum, a stabilising H-infinity feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control scheme are proven through Lyapunov analysis. It is demonstrated that the control method satisfies the H-infinity tracking performance criterion, which signifies robustness against model uncertainty and external perturbations. Next, it is proven that the control loop is globally asymptotically stable. The nonlinear optimal control method retains the advantages of typical optimal control, that is fast and accurate tracking of the reference setpoints under moderate variations of the control input.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"1 1","pages":"55 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonlinear optimal control for the inertia wheel inverted pendulum\",\"authors\":\"G. Rigatos, M. Abbaszadeh, M. Hamida\",\"doi\":\"10.1080/23335777.2019.1678199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Due to underactuation and nonlinearities, the control of the inertia wheel inverted pendulum is a non-trivial problem. The article proposes a nonlinear optimal control approach for the inertia wheel inverted pendulum. First, the dynamic model of the pendulum undergoes approximate linearisation around a temporary operating point which is recomputed at each time-step of the control method. The linearisation procedure makes use of first-order Taylor series expansion and requires the computation of the system’s Jacobian matrices. For the approximately linearised model of the pendulum, a stabilising H-infinity feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control scheme are proven through Lyapunov analysis. It is demonstrated that the control method satisfies the H-infinity tracking performance criterion, which signifies robustness against model uncertainty and external perturbations. Next, it is proven that the control loop is globally asymptotically stable. The nonlinear optimal control method retains the advantages of typical optimal control, that is fast and accurate tracking of the reference setpoints under moderate variations of the control input.\",\"PeriodicalId\":37058,\"journal\":{\"name\":\"Cyber-Physical Systems\",\"volume\":\"1 1\",\"pages\":\"55 - 75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335777.2019.1678199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2019.1678199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

由于惯性轮倒立摆的欠驱动和非线性特性,其控制是一个非平凡问题。提出了惯性轮倒立摆的非线性最优控制方法。首先,钟摆的动力学模型在一个临时工作点附近进行近似线性化,该临时工作点在控制方法的每个时间步长重新计算。线性化过程利用一阶泰勒级数展开,需要计算系统的雅可比矩阵。针对摆的近似线性化模型,设计了一种稳定的h∞反馈控制器。为了计算控制器的反馈增益,在控制算法的每次迭代中重复求解一个代数Riccati方程。通过李雅普诺夫分析证明了该控制方案的稳定性。结果表明,该控制方法满足h∞跟踪性能准则,对模型不确定性和外部扰动具有鲁棒性。其次,证明了控制环是全局渐近稳定的。非线性最优控制方法保留了典型最优控制的优点,即在控制输入的适度变化下快速准确地跟踪参考设定值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear optimal control for the inertia wheel inverted pendulum
ABSTRACT Due to underactuation and nonlinearities, the control of the inertia wheel inverted pendulum is a non-trivial problem. The article proposes a nonlinear optimal control approach for the inertia wheel inverted pendulum. First, the dynamic model of the pendulum undergoes approximate linearisation around a temporary operating point which is recomputed at each time-step of the control method. The linearisation procedure makes use of first-order Taylor series expansion and requires the computation of the system’s Jacobian matrices. For the approximately linearised model of the pendulum, a stabilising H-infinity feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control scheme are proven through Lyapunov analysis. It is demonstrated that the control method satisfies the H-infinity tracking performance criterion, which signifies robustness against model uncertainty and external perturbations. Next, it is proven that the control loop is globally asymptotically stable. The nonlinear optimal control method retains the advantages of typical optimal control, that is fast and accurate tracking of the reference setpoints under moderate variations of the control input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信