在$s=1$处,Tori over number字段和特殊值

IF 0.9 3区 数学 Q2 MATHEMATICS
Adrien Morin
{"title":"在$s=1$处,Tori over number字段和特殊值","authors":"Adrien Morin","doi":"10.4171/dm/906","DOIUrl":null,"url":null,"abstract":"We define a Weil-\\'etale complex with compact support for duals (in the sense of the Bloch dualizing cycles complex $\\mathbb{Z}^c$) of a large class of $\\mathbb{Z}$-constructible sheaves on an integral $1$-dimensional proper arithmetic scheme flat over $\\mathrm{Spec}(\\mathbb{Z})$. This complex can be thought of as computing Weil-\\'etale homology. For those $\\mathbb{Z}$-constructible sheaves that are moreover tamely ramified, we define an\"additive\"complex which we think of as the Lie algebra of the dual of the $\\mathbb{Z}$-constructible sheaf. The product of the determinants of the additive and Weil-\\'etale complex is called the fundamental line. We prove a duality theorem which implies that the fundamental line has a natural trivialization, giving a multiplicative Euler characteristic. We attach a natural $L$-function to the dual of a $\\mathbb{Z}$-constructible sheaf; up to a finite number of factors, this $L$-function is an Artin $L$-function at $s+1$. Our main theorem contains a vanishing order formula at $s=0$ for the $L$-function and states that, in the tamely ramified case, the special value at $s=0$ is given up to sign by the Euler characteristic. This generalizes the analytic class number formula for the special value at $s=1$ of the Dedekind zeta function. In the function field case, this a theorem of arXiv:2009.14504.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tori over number fields and special values at $s=1$\",\"authors\":\"Adrien Morin\",\"doi\":\"10.4171/dm/906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a Weil-\\\\'etale complex with compact support for duals (in the sense of the Bloch dualizing cycles complex $\\\\mathbb{Z}^c$) of a large class of $\\\\mathbb{Z}$-constructible sheaves on an integral $1$-dimensional proper arithmetic scheme flat over $\\\\mathrm{Spec}(\\\\mathbb{Z})$. This complex can be thought of as computing Weil-\\\\'etale homology. For those $\\\\mathbb{Z}$-constructible sheaves that are moreover tamely ramified, we define an\\\"additive\\\"complex which we think of as the Lie algebra of the dual of the $\\\\mathbb{Z}$-constructible sheaf. The product of the determinants of the additive and Weil-\\\\'etale complex is called the fundamental line. We prove a duality theorem which implies that the fundamental line has a natural trivialization, giving a multiplicative Euler characteristic. We attach a natural $L$-function to the dual of a $\\\\mathbb{Z}$-constructible sheaf; up to a finite number of factors, this $L$-function is an Artin $L$-function at $s+1$. Our main theorem contains a vanishing order formula at $s=0$ for the $L$-function and states that, in the tamely ramified case, the special value at $s=0$ is given up to sign by the Euler characteristic. This generalizes the analytic class number formula for the special value at $s=1$ of the Dedekind zeta function. In the function field case, this a theorem of arXiv:2009.14504.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/906\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/906","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个在$\mathbb{Spec}(\mathbb{Z})$上的整数$1维正算术格式上的$\mathbb{Z}$可构造的大类$\mathbb{Z}$上的紧支持对偶的Weil- etale复形(在Bloch对偶循环复形$\mathbb{Z}}$意义上)。这个复合体可以被认为是计算Weil- etale同源性。对于那些$\mathbb{Z}$-可构造层,我们定义了一个“加性”复合体,我们认为它是$\mathbb{Z}$-可构造层对偶的李代数。添加剂的行列式与Weil- etale络合物的乘积称为基本线。我们证明了一个对偶定理,该定理表明基本线具有自然的平凡化,给出了一个乘法欧拉特征。我们将一个自然的$L$-函数附加到$\mathbb{Z}$-可构造序列的对偶上;对于有限个因子,这个L函数在s+1处是一个马丁L函数。我们的主要定理包含了函数在$s=0$处的消失阶公式,并指出,在线性分支情况下,$s=0$处的特殊值被欧拉特征所放弃。推广了Dedekind zeta函数在$s=1$处的特殊值的解析类数公式。在函数域情况下,这是arXiv:2009.14504的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tori over number fields and special values at $s=1$
We define a Weil-\'etale complex with compact support for duals (in the sense of the Bloch dualizing cycles complex $\mathbb{Z}^c$) of a large class of $\mathbb{Z}$-constructible sheaves on an integral $1$-dimensional proper arithmetic scheme flat over $\mathrm{Spec}(\mathbb{Z})$. This complex can be thought of as computing Weil-\'etale homology. For those $\mathbb{Z}$-constructible sheaves that are moreover tamely ramified, we define an"additive"complex which we think of as the Lie algebra of the dual of the $\mathbb{Z}$-constructible sheaf. The product of the determinants of the additive and Weil-\'etale complex is called the fundamental line. We prove a duality theorem which implies that the fundamental line has a natural trivialization, giving a multiplicative Euler characteristic. We attach a natural $L$-function to the dual of a $\mathbb{Z}$-constructible sheaf; up to a finite number of factors, this $L$-function is an Artin $L$-function at $s+1$. Our main theorem contains a vanishing order formula at $s=0$ for the $L$-function and states that, in the tamely ramified case, the special value at $s=0$ is given up to sign by the Euler characteristic. This generalizes the analytic class number formula for the special value at $s=1$ of the Dedekind zeta function. In the function field case, this a theorem of arXiv:2009.14504.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信