测地线$ \mathcal{E} $-预拟逆函数及其在非线性规划问题中的应用

IF 1.1 Q2 MATHEMATICS, APPLIED
Akhlad Iqbal, P. Kumar
{"title":"测地线$ \\mathcal{E} $-预拟逆函数及其在非线性规划问题中的应用","authors":"Akhlad Iqbal, P. Kumar","doi":"10.3934/naco.2021040","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article, we define a new class of functions on Riemannian manifolds, called geodesic <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathcal{E} $\\end{document}</tex-math></inline-formula>-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathcal{E} $\\end{document}</tex-math></inline-formula>-invex set.</p>","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"89 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geodesic $ \\\\mathcal{E} $-prequasi-invex function and its applications to non-linear programming problems\",\"authors\":\"Akhlad Iqbal, P. Kumar\",\"doi\":\"10.3934/naco.2021040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article, we define a new class of functions on Riemannian manifolds, called geodesic <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathcal{E} $\\\\end{document}</tex-math></inline-formula>-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathcal{E} $\\\\end{document}</tex-math></inline-formula>-invex set.</p>\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

In this article, we define a new class of functions on Riemannian manifolds, called geodesic \begin{document}$ \mathcal{E} $\end{document}-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local \begin{document}$ \mathcal{E} $\end{document}-invex set.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic $ \mathcal{E} $-prequasi-invex function and its applications to non-linear programming problems

In this article, we define a new class of functions on Riemannian manifolds, called geodesic \begin{document}$ \mathcal{E} $\end{document}-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local \begin{document}$ \mathcal{E} $\end{document}-invex set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信