{"title":"Al-CNT-Si3N4基纳米复合材料力学与摩擦学性能的优化与模糊模型评价","authors":"R. Ambigai, S. Prabhu","doi":"10.1177/23977914231194233","DOIUrl":null,"url":null,"abstract":"Silicon Nitride (Si3N4) has an extraordinary combination of high hardness, strength, toughness, and advanced properties like excellent wear and corrosion resistant, thermal shock resistance. Also, Carbon Nano Tube (CNT) has grasped interest among the researchers owing to its superior mechanical and thermal properties. Hence, the present study intents to fabricate Al matrix reinforced with Si3N4 nano particulate and Al matrix reinforced with CNT and Si3N4 particulate called hybrid composite via gravity casting route. The fabricated composites were tested for compression test, hardness and tribological test. The L9 orthogonal array was selected to conduct the tribological test in dry sliding conditions. Furthermore, SEM, an optical microscope, and image analysis tools were used to characterize the created composites. To determine the ideal operating conditions of the tribology test, analysis of variance was performed. The correlation between the input parameters and the wear rate, COF, was established using regression models. In order to predict the rate of wear with greater than 95% accuracy, a fuzzy model was developed based on the experimental data.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites\",\"authors\":\"R. Ambigai, S. Prabhu\",\"doi\":\"10.1177/23977914231194233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon Nitride (Si3N4) has an extraordinary combination of high hardness, strength, toughness, and advanced properties like excellent wear and corrosion resistant, thermal shock resistance. Also, Carbon Nano Tube (CNT) has grasped interest among the researchers owing to its superior mechanical and thermal properties. Hence, the present study intents to fabricate Al matrix reinforced with Si3N4 nano particulate and Al matrix reinforced with CNT and Si3N4 particulate called hybrid composite via gravity casting route. The fabricated composites were tested for compression test, hardness and tribological test. The L9 orthogonal array was selected to conduct the tribological test in dry sliding conditions. Furthermore, SEM, an optical microscope, and image analysis tools were used to characterize the created composites. To determine the ideal operating conditions of the tribology test, analysis of variance was performed. The correlation between the input parameters and the wear rate, COF, was established using regression models. In order to predict the rate of wear with greater than 95% accuracy, a fuzzy model was developed based on the experimental data.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914231194233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231194233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites
Silicon Nitride (Si3N4) has an extraordinary combination of high hardness, strength, toughness, and advanced properties like excellent wear and corrosion resistant, thermal shock resistance. Also, Carbon Nano Tube (CNT) has grasped interest among the researchers owing to its superior mechanical and thermal properties. Hence, the present study intents to fabricate Al matrix reinforced with Si3N4 nano particulate and Al matrix reinforced with CNT and Si3N4 particulate called hybrid composite via gravity casting route. The fabricated composites were tested for compression test, hardness and tribological test. The L9 orthogonal array was selected to conduct the tribological test in dry sliding conditions. Furthermore, SEM, an optical microscope, and image analysis tools were used to characterize the created composites. To determine the ideal operating conditions of the tribology test, analysis of variance was performed. The correlation between the input parameters and the wear rate, COF, was established using regression models. In order to predict the rate of wear with greater than 95% accuracy, a fuzzy model was developed based on the experimental data.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.