{"title":"基于DIC和FEMU的HTPB粘接界面宏微观损伤分析及参数反演","authors":"Yongqiang Li, Weimin Lv, Gaochun Li, H. Zang","doi":"10.1080/09276440.2023.2200619","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to realize the quantitative analysis of the structural integrity and damage evolution of hydroxyl-terminated polybutadiene (HTPB) composite solid propellant under external load, the loading failure experiments were carried out on the macro rectangular specimen and the micro specimen, and the numerical analysis of the strain evolution process in the region of interest (ROI) of the specimen was carried out using digital image correlation (DIC). At the same time, with the help of finite element model updating (FEMU) method, the mechanical and cohesion parameters of the specimen were inversed using the combination of adaptive particle swarm optimization (APSO), back propagation (BP) and Hooke-Jeeves algorithm, and the simulation of the whole process of propellant damage and fracture was realized from the microscopic point of view. The results show that inhibiting the debonding of propellant/liner interface is the key to maintain the structural integrity. It starts with the damage and fracture of the propellant side. A scanning electron microscope (SEM) in-situ dynamic tensile test shows that the initial damage occurs at the strain of 27.368%, and the through-type crack propagates along the interface when the strain reaches 43.276%. In addition, the use of combinatorial optimization algorithm can realize the global optimal inversion of 16 parameters divided into three types in 100 complete calculations, reduce the optimal objective function value to 0.0251, and assist the finite element calculation to realize the quantitative analysis and accurate simulation of the experimental process. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Macro and micro damage analysis and parameter inversion of HTPB adhesive Interface based on DIC and FEMU\",\"authors\":\"Yongqiang Li, Weimin Lv, Gaochun Li, H. Zang\",\"doi\":\"10.1080/09276440.2023.2200619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In order to realize the quantitative analysis of the structural integrity and damage evolution of hydroxyl-terminated polybutadiene (HTPB) composite solid propellant under external load, the loading failure experiments were carried out on the macro rectangular specimen and the micro specimen, and the numerical analysis of the strain evolution process in the region of interest (ROI) of the specimen was carried out using digital image correlation (DIC). At the same time, with the help of finite element model updating (FEMU) method, the mechanical and cohesion parameters of the specimen were inversed using the combination of adaptive particle swarm optimization (APSO), back propagation (BP) and Hooke-Jeeves algorithm, and the simulation of the whole process of propellant damage and fracture was realized from the microscopic point of view. The results show that inhibiting the debonding of propellant/liner interface is the key to maintain the structural integrity. It starts with the damage and fracture of the propellant side. A scanning electron microscope (SEM) in-situ dynamic tensile test shows that the initial damage occurs at the strain of 27.368%, and the through-type crack propagates along the interface when the strain reaches 43.276%. In addition, the use of combinatorial optimization algorithm can realize the global optimal inversion of 16 parameters divided into three types in 100 complete calculations, reduce the optimal objective function value to 0.0251, and assist the finite element calculation to realize the quantitative analysis and accurate simulation of the experimental process. GRAPHICAL ABSTRACT\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2200619\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2200619","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Macro and micro damage analysis and parameter inversion of HTPB adhesive Interface based on DIC and FEMU
ABSTRACT In order to realize the quantitative analysis of the structural integrity and damage evolution of hydroxyl-terminated polybutadiene (HTPB) composite solid propellant under external load, the loading failure experiments were carried out on the macro rectangular specimen and the micro specimen, and the numerical analysis of the strain evolution process in the region of interest (ROI) of the specimen was carried out using digital image correlation (DIC). At the same time, with the help of finite element model updating (FEMU) method, the mechanical and cohesion parameters of the specimen were inversed using the combination of adaptive particle swarm optimization (APSO), back propagation (BP) and Hooke-Jeeves algorithm, and the simulation of the whole process of propellant damage and fracture was realized from the microscopic point of view. The results show that inhibiting the debonding of propellant/liner interface is the key to maintain the structural integrity. It starts with the damage and fracture of the propellant side. A scanning electron microscope (SEM) in-situ dynamic tensile test shows that the initial damage occurs at the strain of 27.368%, and the through-type crack propagates along the interface when the strain reaches 43.276%. In addition, the use of combinatorial optimization algorithm can realize the global optimal inversion of 16 parameters divided into three types in 100 complete calculations, reduce the optimal objective function value to 0.0251, and assist the finite element calculation to realize the quantitative analysis and accurate simulation of the experimental process. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields