基于深度卷积网络和MoG-RPCA的微水准航空地球物理数据

Xinze Li , Bangyu Wu , Guofeng Liu , Xu Zhu , Linfei Wang
{"title":"基于深度卷积网络和MoG-RPCA的微水准航空地球物理数据","authors":"Xinze Li ,&nbsp;Bangyu Wu ,&nbsp;Guofeng Liu ,&nbsp;Xu Zhu ,&nbsp;Linfei Wang","doi":"10.1016/j.aiig.2021.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Residual magnetic error remains after standard levelling process. The weak non-geological effect, manifesting itself as streaky noise along flight lines, creates a challenge for airborne geophysical data processing and interpretation. Microleveling is the process to eliminate this residual noise and is now a standard areogeophysical data processing step. In this paper, we propose a two-step procedure for single aerogeophysical data microleveling: a deep convolutional network is first adopted as approximator to map the original data into a low-level part with nature geological structures and a corrugated residual which still contains high-level detail geological structures; second, the mixture of Gaussian robust principal component analysis (MoG-RPCA) is then used to separate the weak energy fine structures from the residual. The final microleveling result is the addition of low-level structures from deep convolutional network and fine structures from MoG-RPCA. The deep convolutional network does not need dataset for training and the handcrafted network serves as prior (deep image prior) to capture the low-level nature geological structures in the areogeophysical data. Experiments on synthetic data and field data demonstrate that the combination of deep convolutional network and MoG-RPCA is an effective framework for single areogeophysical data microleveling.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"2 ","pages":"Pages 20-25"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiig.2021.08.003","citationCount":"1","resultStr":"{\"title\":\"Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA\",\"authors\":\"Xinze Li ,&nbsp;Bangyu Wu ,&nbsp;Guofeng Liu ,&nbsp;Xu Zhu ,&nbsp;Linfei Wang\",\"doi\":\"10.1016/j.aiig.2021.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Residual magnetic error remains after standard levelling process. The weak non-geological effect, manifesting itself as streaky noise along flight lines, creates a challenge for airborne geophysical data processing and interpretation. Microleveling is the process to eliminate this residual noise and is now a standard areogeophysical data processing step. In this paper, we propose a two-step procedure for single aerogeophysical data microleveling: a deep convolutional network is first adopted as approximator to map the original data into a low-level part with nature geological structures and a corrugated residual which still contains high-level detail geological structures; second, the mixture of Gaussian robust principal component analysis (MoG-RPCA) is then used to separate the weak energy fine structures from the residual. The final microleveling result is the addition of low-level structures from deep convolutional network and fine structures from MoG-RPCA. The deep convolutional network does not need dataset for training and the handcrafted network serves as prior (deep image prior) to capture the low-level nature geological structures in the areogeophysical data. Experiments on synthetic data and field data demonstrate that the combination of deep convolutional network and MoG-RPCA is an effective framework for single areogeophysical data microleveling.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"2 \",\"pages\":\"Pages 20-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aiig.2021.08.003\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544121000253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544121000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标准调平后仍有残余磁误差。弱的非地质效应,表现为沿飞行线路的条纹噪声,给航空地球物理数据处理和解释带来了挑战。微水准测量是消除这种残余噪声的过程,现在是标准的地球物理数据处理步骤。本文提出了一种单次航空地球物理数据微水准化的两步法:首先采用深度卷积网络作为逼近器,将原始数据映射到包含自然地质构造的低层次部分和包含高级精细地质构造的波纹残差;其次,采用混合高斯鲁棒主成分分析(MoG-RPCA)从残差中分离出弱能量精细结构;最终的微整平结果是添加了来自深度卷积网络的低级结构和来自MoG-RPCA的精细结构。深度卷积网络不需要数据集进行训练,手工制作的网络作为先验(深度图像先验)来捕获区域地球物理数据中的低级自然地质结构。综合数据和现场数据实验表明,深度卷积网络与MoG-RPCA相结合是一种有效的区域地球物理数据微水准化框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA

Residual magnetic error remains after standard levelling process. The weak non-geological effect, manifesting itself as streaky noise along flight lines, creates a challenge for airborne geophysical data processing and interpretation. Microleveling is the process to eliminate this residual noise and is now a standard areogeophysical data processing step. In this paper, we propose a two-step procedure for single aerogeophysical data microleveling: a deep convolutional network is first adopted as approximator to map the original data into a low-level part with nature geological structures and a corrugated residual which still contains high-level detail geological structures; second, the mixture of Gaussian robust principal component analysis (MoG-RPCA) is then used to separate the weak energy fine structures from the residual. The final microleveling result is the addition of low-level structures from deep convolutional network and fine structures from MoG-RPCA. The deep convolutional network does not need dataset for training and the handcrafted network serves as prior (deep image prior) to capture the low-level nature geological structures in the areogeophysical data. Experiments on synthetic data and field data demonstrate that the combination of deep convolutional network and MoG-RPCA is an effective framework for single areogeophysical data microleveling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信