一种识别智能燃气和供水管网泄漏的新颖检测方法

Marco Fagiani, S. Squartini, M. Severini, F. Piazza
{"title":"一种识别智能燃气和供水管网泄漏的新颖检测方法","authors":"Marco Fagiani, S. Squartini, M. Severini, F. Piazza","doi":"10.1109/IJCNN.2015.7280473","DOIUrl":null,"url":null,"abstract":"In this paper, a novelty detection algorithm for the identification of leakages in smart water/gas grid contexts is proposed. It is based on two separate stages: the first deals with the creation of the statistical leakage-free model, whereas the second evaluates the eventual occurrence of leakage on the basis of the model likelihood. Up to the authors' knowledge, this approach has never been used in the application scenario of interest. A set of several features are extracted from the Almanac of Minutely Power Dataset, and a suboptimal selection is executed to determinate the best combination. The abnormal event (leakage) is induced by manipulating the consumption in the test set. A total of 10 background models are created, by employing both Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) under a comparative perspective, and each of them is adopted to detect 10 leakages, with random duration, length and starting time. Finally, the performance are evaluated in terms of Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC). Obtained results are more than encouraging: the best average AUCs of 85.60% and 87.97% are achieved with HMM, at 1 minute resolution, for natural gas and water, respectively. Specifically, considering true detection rates (TDRs) of 100%, the natural gas exhibits an overall false detection rate (FDR) of 17.11%, and the water achieves an overall FDR of 13.79%.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"42 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A novelty detection approach to identify the occurrence of leakage in smart gas and water grids\",\"authors\":\"Marco Fagiani, S. Squartini, M. Severini, F. Piazza\",\"doi\":\"10.1109/IJCNN.2015.7280473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novelty detection algorithm for the identification of leakages in smart water/gas grid contexts is proposed. It is based on two separate stages: the first deals with the creation of the statistical leakage-free model, whereas the second evaluates the eventual occurrence of leakage on the basis of the model likelihood. Up to the authors' knowledge, this approach has never been used in the application scenario of interest. A set of several features are extracted from the Almanac of Minutely Power Dataset, and a suboptimal selection is executed to determinate the best combination. The abnormal event (leakage) is induced by manipulating the consumption in the test set. A total of 10 background models are created, by employing both Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) under a comparative perspective, and each of them is adopted to detect 10 leakages, with random duration, length and starting time. Finally, the performance are evaluated in terms of Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC). Obtained results are more than encouraging: the best average AUCs of 85.60% and 87.97% are achieved with HMM, at 1 minute resolution, for natural gas and water, respectively. Specifically, considering true detection rates (TDRs) of 100%, the natural gas exhibits an overall false detection rate (FDR) of 17.11%, and the water achieves an overall FDR of 13.79%.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"42 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种用于智能水/气管网泄漏识别的新颖性检测算法。它基于两个独立的阶段:第一个阶段处理统计无泄漏模型的创建,而第二个阶段根据模型的可能性评估泄漏的最终发生。据作者所知,这种方法从未在感兴趣的应用场景中使用过。从分钟功率数据集的Almanac中提取多个特征集合,并执行次优选择以确定最佳组合。异常事件(泄漏)是通过操纵测试集中的消耗引起的。采用比较视角下的高斯混合模型(GMMs)和隐马尔可夫模型(hmm),共建立10个背景模型,分别检测10个泄漏,泄漏持续时间、长度和开始时间随机。最后,根据接收机工作特征(ROC)的曲线下面积(AUC)对性能进行评估。所获得的结果非常令人鼓舞:在1分钟分辨率下,HMM对天然气和水的平均auc分别达到了85.60%和87.97%。具体而言,考虑到100%的真实检测率(tdr),天然气的整体误检率(FDR)为17.11%,水的整体误检率为13.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novelty detection approach to identify the occurrence of leakage in smart gas and water grids
In this paper, a novelty detection algorithm for the identification of leakages in smart water/gas grid contexts is proposed. It is based on two separate stages: the first deals with the creation of the statistical leakage-free model, whereas the second evaluates the eventual occurrence of leakage on the basis of the model likelihood. Up to the authors' knowledge, this approach has never been used in the application scenario of interest. A set of several features are extracted from the Almanac of Minutely Power Dataset, and a suboptimal selection is executed to determinate the best combination. The abnormal event (leakage) is induced by manipulating the consumption in the test set. A total of 10 background models are created, by employing both Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) under a comparative perspective, and each of them is adopted to detect 10 leakages, with random duration, length and starting time. Finally, the performance are evaluated in terms of Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC). Obtained results are more than encouraging: the best average AUCs of 85.60% and 87.97% are achieved with HMM, at 1 minute resolution, for natural gas and water, respectively. Specifically, considering true detection rates (TDRs) of 100%, the natural gas exhibits an overall false detection rate (FDR) of 17.11%, and the water achieves an overall FDR of 13.79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信