{"title":"在富含气体的棒状结构中恒星的形成是否受到抑制?","authors":"F. Maeda","doi":"10.1017/S1743921322003775","DOIUrl":null,"url":null,"abstract":"Abstract Whether the star formation efficiency (SFE) in the bar region is lower than those in the other regions in a barred galaxy has recently been debated. We statistically investigate the SFEs along the bars in nearby gas-rich massive star-forming barred galaxies by distinguishing the center, bar-end, and bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data and the star formation rate surface density is derived from a linear combination of far-ultraviolet and mid-infrared intensities. To distinguish the three regions, we targeted 18 galaxies with a large apparent bar length (≥ 75\"). The resulting SFE in the bars is about 0.6 – 0.8 times lower than that in the disks, which suggests the star formation in the bars tends to be systematically suppressed.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"6 1 1","pages":"207 - 209"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is star formation in gas-rich bars suppressed?\",\"authors\":\"F. Maeda\",\"doi\":\"10.1017/S1743921322003775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Whether the star formation efficiency (SFE) in the bar region is lower than those in the other regions in a barred galaxy has recently been debated. We statistically investigate the SFEs along the bars in nearby gas-rich massive star-forming barred galaxies by distinguishing the center, bar-end, and bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data and the star formation rate surface density is derived from a linear combination of far-ultraviolet and mid-infrared intensities. To distinguish the three regions, we targeted 18 galaxies with a large apparent bar length (≥ 75\\\"). The resulting SFE in the bars is about 0.6 – 0.8 times lower than that in the disks, which suggests the star formation in the bars tends to be systematically suppressed.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":\"6 1 1\",\"pages\":\"207 - 209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921322003775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921322003775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Whether the star formation efficiency (SFE) in the bar region is lower than those in the other regions in a barred galaxy has recently been debated. We statistically investigate the SFEs along the bars in nearby gas-rich massive star-forming barred galaxies by distinguishing the center, bar-end, and bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data and the star formation rate surface density is derived from a linear combination of far-ultraviolet and mid-infrared intensities. To distinguish the three regions, we targeted 18 galaxies with a large apparent bar length (≥ 75"). The resulting SFE in the bars is about 0.6 – 0.8 times lower than that in the disks, which suggests the star formation in the bars tends to be systematically suppressed.