l白噪声分析中Wick微积分及其与正则测试函数空间上随机积分的关系

IF 1 Q1 MATHEMATICS
N. A. Kachanovsky
{"title":"l<s:1>白噪声分析中Wick微积分及其与正则测试函数空间上随机积分的关系","authors":"N. A. Kachanovsky","doi":"10.15330/cmp.14.1.194-212","DOIUrl":null,"url":null,"abstract":"We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Wick calculus and its relationship with stochastic integration on spaces of regular test functions in the Lévy white noise analysis\",\"authors\":\"N. A. Kachanovsky\",\"doi\":\"10.15330/cmp.14.1.194-212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.194-212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.194-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们处理l白噪声分析中的正则测试函数的空间,这些空间是利用Lytvynov对混沌表示性质的推广构造的。我们的目的是研究全纯函数的Wick乘法和Wick版本的性质,并描述在这些空间上的Wick乘法和积分之间的关系。更确切地说,我们建立了正则测试函数的Wick积是正则测试函数;在某些条件下,具有正则测试函数空间参数的全纯函数的Wick版本是正则测试函数;证明当采用Wick乘法时,可以从扩展的随机积分的符号中取一个与时间无关的乘子,这是相对于lsamvy过程的;对Pettis积分(弱积分)建立类似的结果;由原始被积函数的Wick积通过l白噪声得到扩展随机积分的形式Pettis积分表示。作为应用我们的结果的一个例子,我们考虑了一个带Wick乘法的积分随机方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Wick calculus and its relationship with stochastic integration on spaces of regular test functions in the Lévy white noise analysis
We deal with spaces of regular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our aim is to study properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a relationship between Wick multiplication and integration, on these spaces. More exactly, we establish that a Wick product of regular test functions is a regular test function; under some conditions a Wick version of a holomorphic function with an argument from the space of regular test functions is a regular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of an extended stochastic integral with respect to a Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the extended stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise. As an example of an application of our results, we consider an integral stochastic equation with Wick multiplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信