二维修正Fisher-Kolmogorov-Petrovsky-Piscounov方程的一个无条件稳定差分格式

IF 0.7 Q2 MATHEMATICS
Soobin Kwak, S. Kang, Seokju Ham, Youngjin Hwang, Gyeonggyu Lee, Junseok Kim
{"title":"二维修正Fisher-Kolmogorov-Petrovsky-Piscounov方程的一个无条件稳定差分格式","authors":"Soobin Kwak, S. Kang, Seokju Ham, Youngjin Hwang, Gyeonggyu Lee, Junseok Kim","doi":"10.1155/2023/5527728","DOIUrl":null,"url":null,"abstract":"In this article, we develop an unconditionally stable numerical scheme for the modified Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation modeling population dynamics in two-dimensional space. The Fisher–KPP equation models the process of interaction between reaction and diffusion. The new solution algorithm is based on an alternating direction implicit (ADI) method and an interpolation method so that it is unconditionally stable. The proposed finite difference method is second-order accurate in time and space variables. Therefore, the main purpose of this study is to propose the novel Fisher–KPP equation with a nonlinear growth term and develop an unconditionally stable second-order numerical scheme. The novelty of our method is that it is a numerical method with second-order accuracy using interpolation and ADI methods in two dimensions. We demonstrate the performance of the proposed scheme through computational tests such as convergence and stability tests and the effects of model parameters and initial conditions.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unconditionally Stable Difference Scheme for the Two-Dimensional Modified Fisher–Kolmogorov–Petrovsky–Piscounov Equation\",\"authors\":\"Soobin Kwak, S. Kang, Seokju Ham, Youngjin Hwang, Gyeonggyu Lee, Junseok Kim\",\"doi\":\"10.1155/2023/5527728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop an unconditionally stable numerical scheme for the modified Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation modeling population dynamics in two-dimensional space. The Fisher–KPP equation models the process of interaction between reaction and diffusion. The new solution algorithm is based on an alternating direction implicit (ADI) method and an interpolation method so that it is unconditionally stable. The proposed finite difference method is second-order accurate in time and space variables. Therefore, the main purpose of this study is to propose the novel Fisher–KPP equation with a nonlinear growth term and develop an unconditionally stable second-order numerical scheme. The novelty of our method is that it is a numerical method with second-order accuracy using interpolation and ADI methods in two dimensions. We demonstrate the performance of the proposed scheme through computational tests such as convergence and stability tests and the effects of model parameters and initial conditions.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5527728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5527728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了二维空间中种群动态模型的修正Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)方程的一个无条件稳定的数值格式。Fisher-KPP方程模拟了反应与扩散相互作用的过程。该算法基于交替方向隐式(ADI)法和插值法,使其无条件稳定。所提出的有限差分法在时间和空间变量上具有二阶精度。因此,本文的主要目的是提出一种新的具有非线性增长项的Fisher-KPP方程,并给出一种无条件稳定的二阶数值格式。该方法的新颖之处在于它是一种在二维空间中使用插值和ADI方法的二阶精度数值方法。通过收敛性和稳定性测试以及模型参数和初始条件的影响等计算试验证明了该方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unconditionally Stable Difference Scheme for the Two-Dimensional Modified Fisher–Kolmogorov–Petrovsky–Piscounov Equation
In this article, we develop an unconditionally stable numerical scheme for the modified Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation modeling population dynamics in two-dimensional space. The Fisher–KPP equation models the process of interaction between reaction and diffusion. The new solution algorithm is based on an alternating direction implicit (ADI) method and an interpolation method so that it is unconditionally stable. The proposed finite difference method is second-order accurate in time and space variables. Therefore, the main purpose of this study is to propose the novel Fisher–KPP equation with a nonlinear growth term and develop an unconditionally stable second-order numerical scheme. The novelty of our method is that it is a numerical method with second-order accuracy using interpolation and ADI methods in two dimensions. We demonstrate the performance of the proposed scheme through computational tests such as convergence and stability tests and the effects of model parameters and initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信