George Hatzivasilis, Lukasz Ciechomski, Othonas Soultatos, Darko Anicic, A. Bröring, Konstantinos Fysarakis, G. Spanoudakis, Eftychia Lakka, S. Ioannidis, M. Falchetto
{"title":"具有关联数据的物联网应用的安全语义互操作性","authors":"George Hatzivasilis, Lukasz Ciechomski, Othonas Soultatos, Darko Anicic, A. Bröring, Konstantinos Fysarakis, G. Spanoudakis, Eftychia Lakka, S. Ioannidis, M. Falchetto","doi":"10.1109/GLOBECOM38437.2019.9013147","DOIUrl":null,"url":null,"abstract":"Interoperability stands for the capacity of a system to interact with the units of another entity. Although it is quite easy to accomplish this within the products of the same brand, it is not facile to provide compatibility for the whole spectrum of the Internet-of-Things (IoT) and the Linked Data (LD) world. Currently, the different applications and devices operate in their own cloud/platform, without supporting sufficient interaction with different vendor-products. As it concerns the meaning of data, which is the main focus of this paper, semantics can settle commonly agreed information models and ontologies for the used terms. However, as there are several ontologies for describing each distinct 'Thing', we need Semantic Mediators (SMs) in order to perform common data mapping across the various utilized formats (i.e. XML or JSON) and ontology alignment (e.g. resolve conflicts). Our goal is to enable end-to-end vertical compatibility and horizontal cooperation at all levels (field/network/backend). Moreover, the implication of security must be taken into consideration as the unsafe adoption of semantic technologies exposes the linking data and the user's privacy, issues that are neglected by the majority of the semantic-web studies. A motivating example of smart sensing is described along with a preliminary implementation on real heterogeneous devices. Two different IoT platforms are integrating in the case study, detailing the main SM features. The proposed setting is secure, scalable, and the overall overhead is sufficient for runtime operation, while providing significant advances over state-of-the-art solutions.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Secure Semantic Interoperability for IoT Applications with Linked Data\",\"authors\":\"George Hatzivasilis, Lukasz Ciechomski, Othonas Soultatos, Darko Anicic, A. Bröring, Konstantinos Fysarakis, G. Spanoudakis, Eftychia Lakka, S. Ioannidis, M. Falchetto\",\"doi\":\"10.1109/GLOBECOM38437.2019.9013147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interoperability stands for the capacity of a system to interact with the units of another entity. Although it is quite easy to accomplish this within the products of the same brand, it is not facile to provide compatibility for the whole spectrum of the Internet-of-Things (IoT) and the Linked Data (LD) world. Currently, the different applications and devices operate in their own cloud/platform, without supporting sufficient interaction with different vendor-products. As it concerns the meaning of data, which is the main focus of this paper, semantics can settle commonly agreed information models and ontologies for the used terms. However, as there are several ontologies for describing each distinct 'Thing', we need Semantic Mediators (SMs) in order to perform common data mapping across the various utilized formats (i.e. XML or JSON) and ontology alignment (e.g. resolve conflicts). Our goal is to enable end-to-end vertical compatibility and horizontal cooperation at all levels (field/network/backend). Moreover, the implication of security must be taken into consideration as the unsafe adoption of semantic technologies exposes the linking data and the user's privacy, issues that are neglected by the majority of the semantic-web studies. A motivating example of smart sensing is described along with a preliminary implementation on real heterogeneous devices. Two different IoT platforms are integrating in the case study, detailing the main SM features. The proposed setting is secure, scalable, and the overall overhead is sufficient for runtime operation, while providing significant advances over state-of-the-art solutions.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9013147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure Semantic Interoperability for IoT Applications with Linked Data
Interoperability stands for the capacity of a system to interact with the units of another entity. Although it is quite easy to accomplish this within the products of the same brand, it is not facile to provide compatibility for the whole spectrum of the Internet-of-Things (IoT) and the Linked Data (LD) world. Currently, the different applications and devices operate in their own cloud/platform, without supporting sufficient interaction with different vendor-products. As it concerns the meaning of data, which is the main focus of this paper, semantics can settle commonly agreed information models and ontologies for the used terms. However, as there are several ontologies for describing each distinct 'Thing', we need Semantic Mediators (SMs) in order to perform common data mapping across the various utilized formats (i.e. XML or JSON) and ontology alignment (e.g. resolve conflicts). Our goal is to enable end-to-end vertical compatibility and horizontal cooperation at all levels (field/network/backend). Moreover, the implication of security must be taken into consideration as the unsafe adoption of semantic technologies exposes the linking data and the user's privacy, issues that are neglected by the majority of the semantic-web studies. A motivating example of smart sensing is described along with a preliminary implementation on real heterogeneous devices. Two different IoT platforms are integrating in the case study, detailing the main SM features. The proposed setting is secure, scalable, and the overall overhead is sufficient for runtime operation, while providing significant advances over state-of-the-art solutions.