{"title":"具有分布时滞的机械系统的分解稳定性分析","authors":"A. Aleksandrov, A. Tikhonov","doi":"10.21638/11701/SPBU10.2021.102","DOIUrl":null,"url":null,"abstract":"The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"17 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stability analysis of mechanical systems with distributed delay via decomposition\",\"authors\":\"A. Aleksandrov, A. Tikhonov\",\"doi\":\"10.21638/11701/SPBU10.2021.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/SPBU10.2021.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/SPBU10.2021.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Stability analysis of mechanical systems with distributed delay via decomposition
The article analyzes a linear mechanical system with a large parameter at the vector of velocity forces and a distributed delay in positional forces. With the aid of the decomposition method, conditions are obtained under which the problem of stability analysis of the original system of the second-order differential equations can be reduced to studying the stability of two auxiliary first-order subsystems. It should be noted that one of the auxiliary subsystems does not contain a delay, whereas for the second subsystem containing a distributed delay, the stability conditions are formulated in terms of the feasibility of systems of linear matrix inequalities. To substantiate this decomposition, the Lyapunov direct method is used. Special constructions of Lyapunov—Krasovskii functionals are proposed. The developed approach is applied to the problem of monoaxial stabilization of a rigid body. The results of a numerical simulation are presented confirming the conclusions obtained analytically.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.