跳变倍增干扰下的信号滤波

Q3 Mathematics
V. A. Bukhalev, A. A. Skrynnikov, V. A. Boldinov
{"title":"跳变倍增干扰下的信号滤波","authors":"V. A. Bukhalev, A. A. Skrynnikov, V. A. Boldinov","doi":"10.18698/1812-3368-2023-2-4-16","DOIUrl":null,"url":null,"abstract":"The problem of constructing the approximately optimal Bayesian algorithm of filtering the output signal for a linear stochastic dynamical system is solved. Non-linear mixture of the output signal and of the multiplicative interference was measured. This interference is a continuous-valued random process with the unknown distribution law within the given limits of [c(1), c(2)], c(1) > 0, c(2) > 0, and in the frequency range of [0, ∆ω]. The filtering algorithm is synthesized by the approximately optimal signal estimation method based on the theory of systems with random jump structure and the method of two-time parametric approximation of the phase coordinates probability distribution. The method consists in approximate replacement of the unknown probability densities of phase coordinates by the known distribution laws with the unknown mathematical expectations and covariances determined as a result of solving the problem. The proposed approximate-optimal filtering algorithm is based on replacement of the continuous-valued multiplicative interference by a random jump process, i.e., Markov chain with two states c(1), c(2) and equal intensities of transitions from one state to another q′ = 2∆ω. Conditional probability densities of the output signal for fixed states of the Markov chain c(1), c(2) are approximated by gamma distributions that depend on mathematical expectations and variances of the x(t) signal at the fixed c(1), c(2) and measurements x(t) in a mixture with the Markov jump interference. An example of constructing an algorithm for evaluating the distance from an aircraft to the object based on object irradiance measurement by the infrared direction finder was considered. Irradiance was equal to the radiation strength ratio to the square of the distance. Radiation strength, i.e., multiplicative interference, was the random process with unknown continuous distribution in a limited range. The approximate-optimal filter was constructed for distance evaluation by replacing this process with a two-state Markov chain and approximating the distance probability density by the Rayleigh distribution","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Filtering at Jump Multiplicative Interference\",\"authors\":\"V. A. Bukhalev, A. A. Skrynnikov, V. A. Boldinov\",\"doi\":\"10.18698/1812-3368-2023-2-4-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of constructing the approximately optimal Bayesian algorithm of filtering the output signal for a linear stochastic dynamical system is solved. Non-linear mixture of the output signal and of the multiplicative interference was measured. This interference is a continuous-valued random process with the unknown distribution law within the given limits of [c(1), c(2)], c(1) > 0, c(2) > 0, and in the frequency range of [0, ∆ω]. The filtering algorithm is synthesized by the approximately optimal signal estimation method based on the theory of systems with random jump structure and the method of two-time parametric approximation of the phase coordinates probability distribution. The method consists in approximate replacement of the unknown probability densities of phase coordinates by the known distribution laws with the unknown mathematical expectations and covariances determined as a result of solving the problem. The proposed approximate-optimal filtering algorithm is based on replacement of the continuous-valued multiplicative interference by a random jump process, i.e., Markov chain with two states c(1), c(2) and equal intensities of transitions from one state to another q′ = 2∆ω. Conditional probability densities of the output signal for fixed states of the Markov chain c(1), c(2) are approximated by gamma distributions that depend on mathematical expectations and variances of the x(t) signal at the fixed c(1), c(2) and measurements x(t) in a mixture with the Markov jump interference. An example of constructing an algorithm for evaluating the distance from an aircraft to the object based on object irradiance measurement by the infrared direction finder was considered. Irradiance was equal to the radiation strength ratio to the square of the distance. Radiation strength, i.e., multiplicative interference, was the random process with unknown continuous distribution in a limited range. The approximate-optimal filter was constructed for distance evaluation by replacing this process with a two-state Markov chain and approximating the distance probability density by the Rayleigh distribution\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/1812-3368-2023-2-4-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2023-2-4-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

解决了线性随机动力系统输出信号滤波的近似最优贝叶斯算法的构造问题。测量了输出信号与倍增干扰的非线性混合。该干扰是一个连续值随机过程,在[c(1), c(2)], c(1) >, c(2) >给定范围内,频率范围为[0,∆ω],其分布规律未知。该滤波算法采用基于随机跳变结构系统理论的近似最优信号估计方法和相位坐标概率分布的二次参数逼近方法合成。该方法是用已知的分布规律近似地代替相坐标的未知概率密度,并通过求解问题确定未知的数学期望和协方差。所提出的近似最优滤波算法基于一个随机跳跃过程,即具有两种状态c(1), c(2)和从一种状态到另一种状态的转换强度相等q ' = 2∆ω的马尔可夫链来替换连续值乘法干扰。马尔可夫链c(1), c(2)固定状态下输出信号的条件概率密度由伽马分布近似,该分布依赖于固定c(1), c(2)和测量x(t)时x(t)信号的数学期望和方差,并与马尔可夫跳变干扰混合。以红外测向仪测量目标辐照度为基础,构造了一种估算飞机与目标距离的算法为例。辐照度等于辐射强度与距离的平方之比。辐射强度即乘法干扰是有限范围内未知连续分布的随机过程。用两态马尔可夫链代替这一过程,用瑞利分布近似距离概率密度,构造了距离评估的近似最优滤波器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Filtering at Jump Multiplicative Interference
The problem of constructing the approximately optimal Bayesian algorithm of filtering the output signal for a linear stochastic dynamical system is solved. Non-linear mixture of the output signal and of the multiplicative interference was measured. This interference is a continuous-valued random process with the unknown distribution law within the given limits of [c(1), c(2)], c(1) > 0, c(2) > 0, and in the frequency range of [0, ∆ω]. The filtering algorithm is synthesized by the approximately optimal signal estimation method based on the theory of systems with random jump structure and the method of two-time parametric approximation of the phase coordinates probability distribution. The method consists in approximate replacement of the unknown probability densities of phase coordinates by the known distribution laws with the unknown mathematical expectations and covariances determined as a result of solving the problem. The proposed approximate-optimal filtering algorithm is based on replacement of the continuous-valued multiplicative interference by a random jump process, i.e., Markov chain with two states c(1), c(2) and equal intensities of transitions from one state to another q′ = 2∆ω. Conditional probability densities of the output signal for fixed states of the Markov chain c(1), c(2) are approximated by gamma distributions that depend on mathematical expectations and variances of the x(t) signal at the fixed c(1), c(2) and measurements x(t) in a mixture with the Markov jump interference. An example of constructing an algorithm for evaluating the distance from an aircraft to the object based on object irradiance measurement by the infrared direction finder was considered. Irradiance was equal to the radiation strength ratio to the square of the distance. Radiation strength, i.e., multiplicative interference, was the random process with unknown continuous distribution in a limited range. The approximate-optimal filter was constructed for distance evaluation by replacing this process with a two-state Markov chain and approximating the distance probability density by the Rayleigh distribution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信