{"title":"不可分Hilbert空间中平移算子的拓扑可及性","authors":"Z. Novosad","doi":"10.15330/cmp.15.1.278-285","DOIUrl":null,"url":null,"abstract":"We consider a Hilbert space of entire analytic functions on a non-separable Hilbert space, associated with a non-separable Fock space. We show that under some conditions operators, like the differentiation operators and translation operators, are topologically transitive in this space.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological transitivity of translation operators in a non-separable Hilbert space\",\"authors\":\"Z. Novosad\",\"doi\":\"10.15330/cmp.15.1.278-285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Hilbert space of entire analytic functions on a non-separable Hilbert space, associated with a non-separable Fock space. We show that under some conditions operators, like the differentiation operators and translation operators, are topologically transitive in this space.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.278-285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.278-285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Topological transitivity of translation operators in a non-separable Hilbert space
We consider a Hilbert space of entire analytic functions on a non-separable Hilbert space, associated with a non-separable Fock space. We show that under some conditions operators, like the differentiation operators and translation operators, are topologically transitive in this space.