莫泽证明哈纳克不等式的轨迹解释

Lukas Niebel, Rico Zacher
{"title":"莫泽证明哈纳克不等式的轨迹解释","authors":"Lukas Niebel, Rico Zacher","doi":"10.2422/2036-2145.202302_004","DOIUrl":null,"url":null,"abstract":"In 1971 Moser published a simplified version of his proof of the parabolic Harnack inequality. The core new ingredient is a fundamental lemma due to Bombieri and Giusti, which combines an $L^p-L^\\infty$-estimate with a weak $L^1$-estimate for the logarithm of supersolutions. In this note, we give a novel proof of this weak $L^1$-estimate. The presented argument uses parabolic trajectories and does not use any Poincar\\'e inequality. Moreover, the proposed argument gives a geometric interpretation of Moser's result and could allow transferring Moser's method to other equations.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A trajectorial interpretation of Moser’s proof of the Harnack inequality\",\"authors\":\"Lukas Niebel, Rico Zacher\",\"doi\":\"10.2422/2036-2145.202302_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1971 Moser published a simplified version of his proof of the parabolic Harnack inequality. The core new ingredient is a fundamental lemma due to Bombieri and Giusti, which combines an $L^p-L^\\\\infty$-estimate with a weak $L^1$-estimate for the logarithm of supersolutions. In this note, we give a novel proof of this weak $L^1$-estimate. The presented argument uses parabolic trajectories and does not use any Poincar\\\\'e inequality. Moreover, the proposed argument gives a geometric interpretation of Moser's result and could allow transferring Moser's method to other equations.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202302_004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202302_004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

1971年,莫泽发表了他对抛物线型哈纳克不等式的简化证明。核心的新成分是由Bombieri和Giusti提出的一个基本引理,它结合了超解对数的$L^p-L^\infty$ -估计和弱$L^1$ -估计。在本文中,我们给出了这个弱$L^1$ -估计的一个新的证明。提出的论点使用抛物线轨迹,不使用任何庞卡罗不等式。此外,提出的论点给出了莫泽结果的几何解释,并允许将莫泽的方法转移到其他方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A trajectorial interpretation of Moser’s proof of the Harnack inequality
In 1971 Moser published a simplified version of his proof of the parabolic Harnack inequality. The core new ingredient is a fundamental lemma due to Bombieri and Giusti, which combines an $L^p-L^\infty$-estimate with a weak $L^1$-estimate for the logarithm of supersolutions. In this note, we give a novel proof of this weak $L^1$-estimate. The presented argument uses parabolic trajectories and does not use any Poincar\'e inequality. Moreover, the proposed argument gives a geometric interpretation of Moser's result and could allow transferring Moser's method to other equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信