多体系统控制中期望约束稳定动力学的自适应实现

J. Junkins, M. Akella, A. Kurdila
{"title":"多体系统控制中期望约束稳定动力学的自适应实现","authors":"J. Junkins, M. Akella, A. Kurdila","doi":"10.1098/rsta.2001.0884","DOIUrl":null,"url":null,"abstract":"This paper presents a novel way of stabilizing the constraint drift dynamics in the numerical simulation of multibody systems. This formulation is applicable for a large class of uncertain mechanical systems described by nonlinear differential algebraic equations that are subject to holonomic constraints. In the absence of uncertainty in the system inertia parameters, it is possible to develop stabilization relationships that suppress the accumulation of error in the constraint equations during the time integration process. In order to account for ignorance in the parameters, we propose a model reference adaptive control scheme that ensures the asymptotic realization of the desired (reference) constraint violation dynamics. Special attention is given to the case of redundantly actuated systems, as is typical for robotics. For this class of problems, we direct special attention to optimization criteria that achieve any desired manoeuvre using minimum control effort and coordination between the redundant set of actuators. An example application demonstrates the effectiveness and practicality of the proposed adaptive control formulation.","PeriodicalId":20023,"journal":{"name":"Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences","volume":"23 1","pages":"2231 - 2249"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive realization of desired constraint stabilization dynamics in the control of multibody systems\",\"authors\":\"J. Junkins, M. Akella, A. Kurdila\",\"doi\":\"10.1098/rsta.2001.0884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel way of stabilizing the constraint drift dynamics in the numerical simulation of multibody systems. This formulation is applicable for a large class of uncertain mechanical systems described by nonlinear differential algebraic equations that are subject to holonomic constraints. In the absence of uncertainty in the system inertia parameters, it is possible to develop stabilization relationships that suppress the accumulation of error in the constraint equations during the time integration process. In order to account for ignorance in the parameters, we propose a model reference adaptive control scheme that ensures the asymptotic realization of the desired (reference) constraint violation dynamics. Special attention is given to the case of redundantly actuated systems, as is typical for robotics. For this class of problems, we direct special attention to optimization criteria that achieve any desired manoeuvre using minimum control effort and coordination between the redundant set of actuators. An example application demonstrates the effectiveness and practicality of the proposed adaptive control formulation.\",\"PeriodicalId\":20023,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences\",\"volume\":\"23 1\",\"pages\":\"2231 - 2249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2001.0884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2001.0884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种在多体系统数值模拟中稳定约束漂移动力学的新方法。该公式适用于一类受完整约束的非线性微分代数方程所描述的不确定力学系统。在系统惯性参数不存在不确定性的情况下,可以在时间积分过程中建立抑制约束方程误差积累的稳定关系。为了考虑参数的忽略,我们提出了一种模型参考自适应控制方案,以确保期望(参考)约束违反动力学的渐近实现。特别注意的情况下,冗余驱动系统,因为是典型的机器人。对于这类问题,我们特别关注优化准则,即使用最小的控制努力和冗余执行器之间的协调来实现任何期望的操作。实例应用验证了所提自适应控制公式的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive realization of desired constraint stabilization dynamics in the control of multibody systems
This paper presents a novel way of stabilizing the constraint drift dynamics in the numerical simulation of multibody systems. This formulation is applicable for a large class of uncertain mechanical systems described by nonlinear differential algebraic equations that are subject to holonomic constraints. In the absence of uncertainty in the system inertia parameters, it is possible to develop stabilization relationships that suppress the accumulation of error in the constraint equations during the time integration process. In order to account for ignorance in the parameters, we propose a model reference adaptive control scheme that ensures the asymptotic realization of the desired (reference) constraint violation dynamics. Special attention is given to the case of redundantly actuated systems, as is typical for robotics. For this class of problems, we direct special attention to optimization criteria that achieve any desired manoeuvre using minimum control effort and coordination between the redundant set of actuators. An example application demonstrates the effectiveness and practicality of the proposed adaptive control formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信