布尔BI的定理证明

Jonghyun Park, Jeongbong Seo, Sungwoo Park
{"title":"布尔BI的定理证明","authors":"Jonghyun Park, Jeongbong Seo, Sungwoo Park","doi":"10.1145/2429069.2429095","DOIUrl":null,"url":null,"abstract":"While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"45 1","pages":"219-232"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A theorem prover for Boolean BI\",\"authors\":\"Jonghyun Park, Jeongbong Seo, Sungwoo Park\",\"doi\":\"10.1145/2429069.2429095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"45 1\",\"pages\":\"219-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2429069.2429095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

虽然分离逻辑被认为是大规模程序验证的支持技术,但大多数现有的验证工具只使用分离逻辑的一小部分,不包括分离隐含。作为使用完整分离逻辑的验证工具的第一步,我们开发了布尔BI(束暗示)的嵌套序列演算,分离逻辑的底层理论,以及基于它的定理证明器。我们的嵌套序列演算的一个显著特点是,它的序列不仅可以有较小的子序列,而且可以有多个父序列,从而产生序列的图结构而不是树结构。我们的定理证明是基于对嵌套序列演算的改进中的向后搜索,其中在所有推理规则中都内置了弱化和收缩。我们解释了设计定理证明器的细节,并提供了其实用性的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theorem prover for Boolean BI
While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信