{"title":"布尔BI的定理证明","authors":"Jonghyun Park, Jeongbong Seo, Sungwoo Park","doi":"10.1145/2429069.2429095","DOIUrl":null,"url":null,"abstract":"While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A theorem prover for Boolean BI\",\"authors\":\"Jonghyun Park, Jeongbong Seo, Sungwoo Park\",\"doi\":\"10.1145/2429069.2429095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2429069.2429095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
While separation logic is acknowledged as an enabling technology for large-scale program verification, most of the existing verification tools use only a fragment of separation logic that excludes separating implication. As the first step towards a verification tool using full separation logic, we develop a nested sequent calculus for Boolean BI (Bunched Implications), the underlying theory of separation logic, as well as a theorem prover based on it. A salient feature of our nested sequent calculus is that its sequent may have not only smaller child sequents but also multiple parent sequents, thus producing a graph structure of sequents instead of a tree structure. Our theorem prover is based on backward search in a refinement of the nested sequent calculus in which weakening and contraction are built into all the inference rules. We explain the details of designing our theorem prover and provide empirical evidence of its practicality.