油气公司价值链优化——集成工作流程

Shaikha Al Jenaibi, Tasnim Al Mzaini, L. Saputelli, H. Hafez, Carlos Mata, R. Narayanan, K. Mogensen, R. Mohan, Frank Charles, Z. Mammadov, Alvaro Escorcia, G. Mijares, J. Rodriguez, Cristina Hernandez
{"title":"油气公司价值链优化——集成工作流程","authors":"Shaikha Al Jenaibi, Tasnim Al Mzaini, L. Saputelli, H. Hafez, Carlos Mata, R. Narayanan, K. Mogensen, R. Mohan, Frank Charles, Z. Mammadov, Alvaro Escorcia, G. Mijares, J. Rodriguez, Cristina Hernandez","doi":"10.2118/197925-ms","DOIUrl":null,"url":null,"abstract":"\n Meeting energy demands and generating profit to shareholders is a continuous quest for oil and gas companies. Production and business planning in integrated oil and gas operating companies is a complex process involving numerous organizations, historic data collection, modeling, prediction, and forecasting. Integrated business planning complexity intensifies due to the uncertain nature of past facts and future conditions.\n We propose a framework for integrating upstream and downstream production planning processes using data-driven models representing the upstream capacities, downstream processes, and a countrywide profit model.\n The upstream production model forecasts optimum capacity scenarios of the reservoir fluids with their compositional characteristics and hydraulic performance of the surface facilities while honoring business rules, and based on the various long-term expenditure scenarios, downtime requirements, and downstream demand schedules.\n An integrated optimization model for value chain has the potential to protect profitability for oil and gas companies in times of unbalanced market forces.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Value Chain Optimization in Oil & Gas Companies – Integrated Workflows\",\"authors\":\"Shaikha Al Jenaibi, Tasnim Al Mzaini, L. Saputelli, H. Hafez, Carlos Mata, R. Narayanan, K. Mogensen, R. Mohan, Frank Charles, Z. Mammadov, Alvaro Escorcia, G. Mijares, J. Rodriguez, Cristina Hernandez\",\"doi\":\"10.2118/197925-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Meeting energy demands and generating profit to shareholders is a continuous quest for oil and gas companies. Production and business planning in integrated oil and gas operating companies is a complex process involving numerous organizations, historic data collection, modeling, prediction, and forecasting. Integrated business planning complexity intensifies due to the uncertain nature of past facts and future conditions.\\n We propose a framework for integrating upstream and downstream production planning processes using data-driven models representing the upstream capacities, downstream processes, and a countrywide profit model.\\n The upstream production model forecasts optimum capacity scenarios of the reservoir fluids with their compositional characteristics and hydraulic performance of the surface facilities while honoring business rules, and based on the various long-term expenditure scenarios, downtime requirements, and downstream demand schedules.\\n An integrated optimization model for value chain has the potential to protect profitability for oil and gas companies in times of unbalanced market forces.\",\"PeriodicalId\":11091,\"journal\":{\"name\":\"Day 3 Wed, November 13, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 13, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197925-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197925-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

满足能源需求并为股东创造利润是石油和天然气公司不断追求的目标。综合油气运营公司的生产和业务规划是一个复杂的过程,涉及众多组织、历史数据收集、建模、预测和预测。由于过去事实和未来条件的不确定性,综合业务规划的复杂性增加了。我们提出了一个框架,利用数据驱动的模型来整合上游和下游的生产计划过程,这些模型代表了上游能力、下游过程和全国范围的盈利模型。上游生产模型根据储层流体的组成特征和地面设施的水力性能,在遵守业务规则的同时,根据各种长期支出情景、停机需求和下游需求计划,预测储层流体的最佳产能情景。在市场力量不平衡的情况下,价值链的集成优化模型有可能保护油气公司的盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Value Chain Optimization in Oil & Gas Companies – Integrated Workflows
Meeting energy demands and generating profit to shareholders is a continuous quest for oil and gas companies. Production and business planning in integrated oil and gas operating companies is a complex process involving numerous organizations, historic data collection, modeling, prediction, and forecasting. Integrated business planning complexity intensifies due to the uncertain nature of past facts and future conditions. We propose a framework for integrating upstream and downstream production planning processes using data-driven models representing the upstream capacities, downstream processes, and a countrywide profit model. The upstream production model forecasts optimum capacity scenarios of the reservoir fluids with their compositional characteristics and hydraulic performance of the surface facilities while honoring business rules, and based on the various long-term expenditure scenarios, downtime requirements, and downstream demand schedules. An integrated optimization model for value chain has the potential to protect profitability for oil and gas companies in times of unbalanced market forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信