b样条建模的可定制自适应正则化技术

David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka
{"title":"b样条建模的可定制自适应正则化技术","authors":"David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka","doi":"10.48550/arXiv.2301.01209","DOIUrl":null,"url":null,"abstract":"B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) [Lenz et al. 2022].","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"25 3 1","pages":"102037"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customizable Adaptive Regularization Techniques for B-Spline Modeling\",\"authors\":\"David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka\",\"doi\":\"10.48550/arXiv.2301.01209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) [Lenz et al. 2022].\",\"PeriodicalId\":14601,\"journal\":{\"name\":\"J. Comput. Sci.\",\"volume\":\"25 3 1\",\"pages\":\"102037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.01209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

b样条模型是用函数近似表示科学数据集的一种强大方法。然而,当拟合数据不均匀分布时,这些模型可能会出现伪振荡。模型正则化(即平滑)传统上被用来最小化这些振荡;不幸的是,如果不平滑数据集的关键特征,有时不可能充分去除不需要的工件。在本文中,我们提出了一种模型正则化方法,该方法保留了数据集的重要特征,同时最小化了人为振荡。我们的方法在整个域内自动改变平滑参数的强度,去除约束较差区域的伪影,同时保持其他区域不变。提出的方法选择性地结合基于一阶导数和二阶导数的正则化项,在保持模型精度的同时最小化数值伪影。我们的方法的行为在科学模拟产生的二维和三维数据集的集合上得到了验证。此外,重点介绍了一个关键的调优参数,并详细介绍了该参数的效果。本文是我们之前在2022年国际计算科学会议(ICCS)上发表的会议论文的延伸[Lenz et al. 2022]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Customizable Adaptive Regularization Techniques for B-Spline Modeling
B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) [Lenz et al. 2022].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信