Pratik Magar, Sanjay Singh, Swapnil Mishra, P. Gaikwad
{"title":"使用图像预处理和TensorFlow框架进行手势计算机任务","authors":"Pratik Magar, Sanjay Singh, Swapnil Mishra, P. Gaikwad","doi":"10.17577/IJERTV9IS090303","DOIUrl":null,"url":null,"abstract":"The method for real time Hand Gesture Recognition and feature extraction using a web camera. For humans, hands are used most frequently to communicate and interact with machines. Mouse and Keyboard are the basic input/output to computers and the use of both the devices require the use of hands. Most important and immediate information exchange between man and machine is through visual and aural aid, but this communication is one-sided. To help somewhat mouse remedies this problem, but there are limitations as well. Although hands are most commonly used for day to day physical manipulation tasks, but in some cases they are also used for communication. Hand gestures support us in our daily communications to convey our messages clearly. Hands are most important for mute and deaf people, who depends on their hands and gestures to communicate, so hand gestures are vital for communication in sign language. Hand gesture interaction has been the trending technology for humancomputer interaction (HCI). Frequently a number of research works are carried out in this area to expedite and contrive interaction with computers. In this project, we are attempting to create a real-time human-computer interaction system (HCI) using different hand gestures i.e, hand signs. We implemented a system that recognizes the hand gesture performed using the simple web camera of a PC. We used the already established OpenCV library with TensorFlow to implement the various methods of Image Processing. Operations that were carried out were Capturing frames, Background Subtraction using MOG filter, Noise Reduction using Gaussian Blur, converting the captured image to binary image, finding the contours through Convex Hull method which is used for removing convexity defects and segment the image. Using these segmented images we built our own dataset that was used to train the model with TensorFlow. Then we used these methods again for the segmentation of the input image which is then passed to the model to get the output class label. Index Terms HCI, GOS, CNN, GUI, ROI, GPU.","PeriodicalId":13986,"journal":{"name":"International Journal of Engineering Research and","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carry Out Computer Tasks with Gesture using Image Pre-Processing and TensorFlow Framework\",\"authors\":\"Pratik Magar, Sanjay Singh, Swapnil Mishra, P. Gaikwad\",\"doi\":\"10.17577/IJERTV9IS090303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method for real time Hand Gesture Recognition and feature extraction using a web camera. For humans, hands are used most frequently to communicate and interact with machines. Mouse and Keyboard are the basic input/output to computers and the use of both the devices require the use of hands. Most important and immediate information exchange between man and machine is through visual and aural aid, but this communication is one-sided. To help somewhat mouse remedies this problem, but there are limitations as well. Although hands are most commonly used for day to day physical manipulation tasks, but in some cases they are also used for communication. Hand gestures support us in our daily communications to convey our messages clearly. Hands are most important for mute and deaf people, who depends on their hands and gestures to communicate, so hand gestures are vital for communication in sign language. Hand gesture interaction has been the trending technology for humancomputer interaction (HCI). Frequently a number of research works are carried out in this area to expedite and contrive interaction with computers. In this project, we are attempting to create a real-time human-computer interaction system (HCI) using different hand gestures i.e, hand signs. We implemented a system that recognizes the hand gesture performed using the simple web camera of a PC. We used the already established OpenCV library with TensorFlow to implement the various methods of Image Processing. Operations that were carried out were Capturing frames, Background Subtraction using MOG filter, Noise Reduction using Gaussian Blur, converting the captured image to binary image, finding the contours through Convex Hull method which is used for removing convexity defects and segment the image. Using these segmented images we built our own dataset that was used to train the model with TensorFlow. Then we used these methods again for the segmentation of the input image which is then passed to the model to get the output class label. Index Terms HCI, GOS, CNN, GUI, ROI, GPU.\",\"PeriodicalId\":13986,\"journal\":{\"name\":\"International Journal of Engineering Research and\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research and\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17577/IJERTV9IS090303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17577/IJERTV9IS090303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carry Out Computer Tasks with Gesture using Image Pre-Processing and TensorFlow Framework
The method for real time Hand Gesture Recognition and feature extraction using a web camera. For humans, hands are used most frequently to communicate and interact with machines. Mouse and Keyboard are the basic input/output to computers and the use of both the devices require the use of hands. Most important and immediate information exchange between man and machine is through visual and aural aid, but this communication is one-sided. To help somewhat mouse remedies this problem, but there are limitations as well. Although hands are most commonly used for day to day physical manipulation tasks, but in some cases they are also used for communication. Hand gestures support us in our daily communications to convey our messages clearly. Hands are most important for mute and deaf people, who depends on their hands and gestures to communicate, so hand gestures are vital for communication in sign language. Hand gesture interaction has been the trending technology for humancomputer interaction (HCI). Frequently a number of research works are carried out in this area to expedite and contrive interaction with computers. In this project, we are attempting to create a real-time human-computer interaction system (HCI) using different hand gestures i.e, hand signs. We implemented a system that recognizes the hand gesture performed using the simple web camera of a PC. We used the already established OpenCV library with TensorFlow to implement the various methods of Image Processing. Operations that were carried out were Capturing frames, Background Subtraction using MOG filter, Noise Reduction using Gaussian Blur, converting the captured image to binary image, finding the contours through Convex Hull method which is used for removing convexity defects and segment the image. Using these segmented images we built our own dataset that was used to train the model with TensorFlow. Then we used these methods again for the segmentation of the input image which is then passed to the model to get the output class label. Index Terms HCI, GOS, CNN, GUI, ROI, GPU.