哈肯定理的唯一性

IF 0.8 3区 数学 Q2 MATHEMATICS
M. Freedman, M. Scharlemann
{"title":"哈肯定理的唯一性","authors":"M. Freedman, M. Scharlemann","doi":"10.1307/mmj/20216081","DOIUrl":null,"url":null,"abstract":"Following Haken and Casson-Gordon, it was shown in [Sc] that given a reducing sphere or boundary-reducing disk S in a Heegaard split manifold M in which every sphere separates, the Heegaard surface T can be isotoped so that it intersects S in a single circle. Here we show that when this is achieved by two different positionings of T, one can be moved to the other by a sequence of 1) isotopies of T rel S 2) pushing a stabilizing pair of T through S and 3) eyegelass twists of T. The last move is inspired by one of Powell's proposed generators for the Goeritz group.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"137 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniqueness in Haken’s Theorem\",\"authors\":\"M. Freedman, M. Scharlemann\",\"doi\":\"10.1307/mmj/20216081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following Haken and Casson-Gordon, it was shown in [Sc] that given a reducing sphere or boundary-reducing disk S in a Heegaard split manifold M in which every sphere separates, the Heegaard surface T can be isotoped so that it intersects S in a single circle. Here we show that when this is achieved by two different positionings of T, one can be moved to the other by a sequence of 1) isotopies of T rel S 2) pushing a stabilizing pair of T through S and 3) eyegelass twists of T. The last move is inspired by one of Powell's proposed generators for the Goeritz group.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216081\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216081","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

继Haken和Casson-Gordon之后,在[Sc]中表明,给定Heegaard分裂流形M中每个球体分离的还原球或边界还原盘S, Heegaard曲面T可以被同位素化,使其与S相交成一个圆。在这里,我们表明,当T的两个不同位置实现这一目标时,一个可以通过一系列的方式移动到另一个:1)T的同位素S, 2)推动稳定的T对通过S, 3) T的眼镜状扭曲。最后一个移动的灵感来自鲍威尔提出的Goeritz组的发电机之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness in Haken’s Theorem
Following Haken and Casson-Gordon, it was shown in [Sc] that given a reducing sphere or boundary-reducing disk S in a Heegaard split manifold M in which every sphere separates, the Heegaard surface T can be isotoped so that it intersects S in a single circle. Here we show that when this is achieved by two different positionings of T, one can be moved to the other by a sequence of 1) isotopies of T rel S 2) pushing a stabilizing pair of T through S and 3) eyegelass twists of T. The last move is inspired by one of Powell's proposed generators for the Goeritz group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信