L. Boulais, R. Jellali, U. Pereira, E. Leclerc, S. Bencherif, C. Legallais
{"title":"低温集成肝组织工程生物芯片","authors":"L. Boulais, R. Jellali, U. Pereira, E. Leclerc, S. Bencherif, C. Legallais","doi":"10.2139/ssrn.3757905","DOIUrl":null,"url":null,"abstract":"Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young's modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models.","PeriodicalId":11894,"journal":{"name":"EngRN: Biomaterials (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cryogel-Integrated Biochip for Liver Tissue Engineering\",\"authors\":\"L. Boulais, R. Jellali, U. Pereira, E. Leclerc, S. Bencherif, C. Legallais\",\"doi\":\"10.2139/ssrn.3757905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young's modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models.\",\"PeriodicalId\":11894,\"journal\":{\"name\":\"EngRN: Biomaterials (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Biomaterials (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3757905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Biomaterials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3757905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cryogel-Integrated Biochip for Liver Tissue Engineering
Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young's modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models.