张成椭圆曲线幂次的等根类

M. Kirschmer, Fabien Narbonne, C. Ritzenthaler, Damien Robert
{"title":"张成椭圆曲线幂次的等根类","authors":"M. Kirschmer, Fabien Narbonne, C. Ritzenthaler, Damien Robert","doi":"10.1090/MCOM/3672","DOIUrl":null,"url":null,"abstract":"Let \n\n \n E\n E\n \n\n be an ordinary elliptic curve over a finite field and \n\n \n g\n g\n \n\n be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of \n\n \n \n E\n g\n \n E^g\n \n\n. The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to \n\n \n \n E\n 3\n \n E^3\n \n\n and of the Igusa modular form in dimension \n\n \n 4\n 4\n \n\n. We illustrate our algorithms with examples of curves with many rational points over finite fields.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"42 1","pages":"401-449"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spanning the isogeny class of a power of an elliptic curve\",\"authors\":\"M. Kirschmer, Fabien Narbonne, C. Ritzenthaler, Damien Robert\",\"doi\":\"10.1090/MCOM/3672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\n\\n \\n E\\n E\\n \\n\\n be an ordinary elliptic curve over a finite field and \\n\\n \\n g\\n g\\n \\n\\n be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of \\n\\n \\n \\n E\\n g\\n \\n E^g\\n \\n\\n. The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to \\n\\n \\n \\n E\\n 3\\n \\n E^3\\n \\n\\n and of the Igusa modular form in dimension \\n\\n \\n 4\\n 4\\n \\n\\n. We illustrate our algorithms with examples of curves with many rational points over finite fields.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"42 1\",\"pages\":\"401-449\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

设E E为有限域上的普通椭圆曲线,g g为正整数。在一定的技术假设下,给出了一种跨出等同构类E g E^g中的主极化阿贝尔变体同构类的算法。这些变化首先被描述为(不一定是最大的)二次阶的厄米格,然后在几何上根据它们的代数零点。我们还展示了如何通过仔细选择零点的仿射升力,在常数中以多项式形式给出偶权的西格尔模形式的代数计算。然后,我们利用这些结果给出了在4维4上的Igusa模形式的主要极化阿贝尔三倍等齐e ^3的Serre障碍的代数计算。我们用有限域上有许多有理点的曲线的例子来说明我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanning the isogeny class of a power of an elliptic curve
Let E E be an ordinary elliptic curve over a finite field and g g be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of E g E^g . The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E 3 E^3 and of the Igusa modular form in dimension 4 4 . We illustrate our algorithms with examples of curves with many rational points over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信