{"title":"关于黎曼-泊松李群","authors":"B. Alioune, M. Boucetta, Ahmed Sid’Ahmed Lessiad","doi":"10.5817/am2020-4-225","DOIUrl":null,"url":null,"abstract":"A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in C.R. Acad. Sci. Paris s\\'er. {\\bf I 333} (2001) 763-768. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"77 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Riemann-Poisson Lie groups\",\"authors\":\"B. Alioune, M. Boucetta, Ahmed Sid’Ahmed Lessiad\",\"doi\":\"10.5817/am2020-4-225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in C.R. Acad. Sci. Paris s\\\\'er. {\\\\bf I 333} (2001) 763-768. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2020-4-225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2020-4-225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
黎曼-泊松李群是具有左不变黎曼度规和左不变泊松张量的李群,它们在C.R.中引入的意义上是相容的。巴黎\ ' er。{\bf I 333}(2001) 763-768。我们研究了这些李群,并给出了它们的李代数的一个表征。我们也给出了一种构造这些李代数的方法,并给出了5维李代数的列表。
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in C.R. Acad. Sci. Paris s\'er. {\bf I 333} (2001) 763-768. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.