{"title":"超薄绝缘体插入金属/锗结中的长距离钉钉相互作用","authors":"T. Nishimura, K. Kita, K. Nagashio, A. Toriumi","doi":"10.1109/SNW.2010.5562590","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the Fermi Level Pinning (FLP) modulation at metal/germanium (Ge) interface by inserting ultra-thin insulator film. The FLP was alleviated gradually and continuously with increasing insulator (GeO2) thickness up to 2 nm. The results cannot be simply explained by the termination of dangling bonds or defects just at Ge interface. It is inferred that relatively long range (∼ 2 nm) interaction between metal and Ge might be involved in the FLP and its alleviation.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"333 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Long range pinning interaction in ultra-thin insulator-inserted metal/germanium junctions\",\"authors\":\"T. Nishimura, K. Kita, K. Nagashio, A. Toriumi\",\"doi\":\"10.1109/SNW.2010.5562590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the Fermi Level Pinning (FLP) modulation at metal/germanium (Ge) interface by inserting ultra-thin insulator film. The FLP was alleviated gradually and continuously with increasing insulator (GeO2) thickness up to 2 nm. The results cannot be simply explained by the termination of dangling bonds or defects just at Ge interface. It is inferred that relatively long range (∼ 2 nm) interaction between metal and Ge might be involved in the FLP and its alleviation.\",\"PeriodicalId\":6433,\"journal\":{\"name\":\"2010 Silicon Nanoelectronics Workshop\",\"volume\":\"333 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Silicon Nanoelectronics Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2010.5562590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long range pinning interaction in ultra-thin insulator-inserted metal/germanium junctions
In this paper, we discuss the Fermi Level Pinning (FLP) modulation at metal/germanium (Ge) interface by inserting ultra-thin insulator film. The FLP was alleviated gradually and continuously with increasing insulator (GeO2) thickness up to 2 nm. The results cannot be simply explained by the termination of dangling bonds or defects just at Ge interface. It is inferred that relatively long range (∼ 2 nm) interaction between metal and Ge might be involved in the FLP and its alleviation.