亥姆霍兹系统的极限吸收原理及时谐各向同性麦克斯韦方程组

Lucrezia Cossetti, Rainer Mandel
{"title":"亥姆霍兹系统的极限吸收原理及时谐各向同性麦克斯韦方程组","authors":"Lucrezia Cossetti, Rainer Mandel","doi":"10.5445/IR/1000124275","DOIUrl":null,"url":null,"abstract":"In this work we investigate the $L^p-L^q$-mapping properties of the resolvent associated with the time-harmonic isotropic Maxwell operator. As spectral parameters close to the spectrum are also covered by our analysis, we obtain an $L^p-L^q$-type Limiting Absorption Principle for this operator. Our analysis relies on new results for Helmholtz systems with zero order non-Hermitian perturbations. Moreover, we provide an improved version of the Limiting Absorption Principle for Hermitian (self-adjoint) Helmholtz systems.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A limiting absorption principle for Helmholtz systems and time-harmonic isotropic Maxwell’s equations\",\"authors\":\"Lucrezia Cossetti, Rainer Mandel\",\"doi\":\"10.5445/IR/1000124275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate the $L^p-L^q$-mapping properties of the resolvent associated with the time-harmonic isotropic Maxwell operator. As spectral parameters close to the spectrum are also covered by our analysis, we obtain an $L^p-L^q$-type Limiting Absorption Principle for this operator. Our analysis relies on new results for Helmholtz systems with zero order non-Hermitian perturbations. Moreover, we provide an improved version of the Limiting Absorption Principle for Hermitian (self-adjoint) Helmholtz systems.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000124275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000124275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们研究了与时调和各向同性麦克斯韦算子相关的解的L^p-L^q -映射性质。由于我们的分析也涵盖了接近光谱的光谱参数,我们得到了该算子的L^p-L^q$型极限吸收原理。我们的分析依赖于零阶非厄米扰动的亥姆霍兹系统的新结果。此外,我们还提供了厄米(自伴随)亥姆霍兹系统的极限吸收原理的改进版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A limiting absorption principle for Helmholtz systems and time-harmonic isotropic Maxwell’s equations
In this work we investigate the $L^p-L^q$-mapping properties of the resolvent associated with the time-harmonic isotropic Maxwell operator. As spectral parameters close to the spectrum are also covered by our analysis, we obtain an $L^p-L^q$-type Limiting Absorption Principle for this operator. Our analysis relies on new results for Helmholtz systems with zero order non-Hermitian perturbations. Moreover, we provide an improved version of the Limiting Absorption Principle for Hermitian (self-adjoint) Helmholtz systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信