具有任务时间约束的维修保障资源调度方法

Chongchong Guan, Hui Lu
{"title":"具有任务时间约束的维修保障资源调度方法","authors":"Chongchong Guan, Hui Lu","doi":"10.1109/SSCI44817.2019.9003132","DOIUrl":null,"url":null,"abstract":"Maintenance support resource scheduling (MSRS) problem has attracted increasing attention in modern battle. It aims to allocate resources from multi-supply points to multi-tasks with the shortest time. However, there exists various constraints which are difficult to satisfy at the same time, such as limited resource reserves, different resource requirements, complex route conditions and strict task timing. As a result, we first obtain the shortest routes and task sequence with route planning and topological sorting algorithms separately. Then, with these information, an integrated meta-heuristic algorithm (IMHA) is designed to solve all the constraints. Furthermore, two improved algorithms, CMHA and GMHA are generated with classical and greedy scheduling strategies respectively. Experiment results show the feasibility of IMHA in solving the MSRS problem with timing constraint. Besides, compared with the IMHA, the GMHA and CMHA can generate scheduling schemes with lower cost and time in the whole 24 instances. In addition, as the increase of proportion of timing tasks, the advantages of GMHA in cost and time are more evident.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"154 1","pages":"2698-2705"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling method of maintenance support resource with task timing constraint\",\"authors\":\"Chongchong Guan, Hui Lu\",\"doi\":\"10.1109/SSCI44817.2019.9003132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintenance support resource scheduling (MSRS) problem has attracted increasing attention in modern battle. It aims to allocate resources from multi-supply points to multi-tasks with the shortest time. However, there exists various constraints which are difficult to satisfy at the same time, such as limited resource reserves, different resource requirements, complex route conditions and strict task timing. As a result, we first obtain the shortest routes and task sequence with route planning and topological sorting algorithms separately. Then, with these information, an integrated meta-heuristic algorithm (IMHA) is designed to solve all the constraints. Furthermore, two improved algorithms, CMHA and GMHA are generated with classical and greedy scheduling strategies respectively. Experiment results show the feasibility of IMHA in solving the MSRS problem with timing constraint. Besides, compared with the IMHA, the GMHA and CMHA can generate scheduling schemes with lower cost and time in the whole 24 instances. In addition, as the increase of proportion of timing tasks, the advantages of GMHA in cost and time are more evident.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"154 1\",\"pages\":\"2698-2705\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代作战中,维修保障资源调度问题日益引起人们的关注。它旨在以最短的时间将资源从多个供应点分配给多个任务。但同时也存在着各种难以满足的约束条件,如有限的资源储备、不同的资源需求、复杂的路线条件、严格的任务时序等。因此,我们首先分别使用路由规划算法和拓扑排序算法获得最短的路由和任务序列。然后,利用这些信息,设计了一个集成的元启发式算法(IMHA)来求解所有约束。在此基础上,分别采用经典调度策略和贪婪调度策略生成了改进算法CMHA和GMHA。实验结果表明,IMHA算法在解决带时间约束的MSRS问题上是可行的。此外,与IMHA相比,GMHA和CMHA在整个24个实例中都能以更低的成本和时间生成调度方案。此外,随着定时任务比例的增加,GMHA在成本和时间上的优势更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling method of maintenance support resource with task timing constraint
Maintenance support resource scheduling (MSRS) problem has attracted increasing attention in modern battle. It aims to allocate resources from multi-supply points to multi-tasks with the shortest time. However, there exists various constraints which are difficult to satisfy at the same time, such as limited resource reserves, different resource requirements, complex route conditions and strict task timing. As a result, we first obtain the shortest routes and task sequence with route planning and topological sorting algorithms separately. Then, with these information, an integrated meta-heuristic algorithm (IMHA) is designed to solve all the constraints. Furthermore, two improved algorithms, CMHA and GMHA are generated with classical and greedy scheduling strategies respectively. Experiment results show the feasibility of IMHA in solving the MSRS problem with timing constraint. Besides, compared with the IMHA, the GMHA and CMHA can generate scheduling schemes with lower cost and time in the whole 24 instances. In addition, as the increase of proportion of timing tasks, the advantages of GMHA in cost and time are more evident.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信