超越DC和MCMC:拟合光曲线的替代算法和方法

IF 0.4 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
A. Kochoska, K. Conroy, K. Hambleton, A. Prša
{"title":"超越DC和MCMC:拟合光曲线的替代算法和方法","authors":"A. Kochoska, K. Conroy, K. Hambleton, A. Prša","doi":"10.31577/caosp.2020.50.2.539","DOIUrl":null,"url":null,"abstract":"The parameter space of binary star light curve models is highly complex and degenerate, thus basic fitting approaches often fail to yield a good (and correct) estimate of the parameter values and their uncertainties. On the other hand, we have an increasingly large number of fitting and sampling algorithms available that can be relatively easily interfaced with open-source eclipsing binary packages, like PHOEBE 2. We showcase several fitting methods, including local and global minimizers, nested sampling and machine learning methods, and evaluate their performance on fitting a light curve model with PHOEBE 2.","PeriodicalId":50617,"journal":{"name":"Contributions of the Astronomical Observatory Skalnate Pleso","volume":"89 1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Beyond DC and MCMC: alternative algorithms and approaches to fitting light curves\",\"authors\":\"A. Kochoska, K. Conroy, K. Hambleton, A. Prša\",\"doi\":\"10.31577/caosp.2020.50.2.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameter space of binary star light curve models is highly complex and degenerate, thus basic fitting approaches often fail to yield a good (and correct) estimate of the parameter values and their uncertainties. On the other hand, we have an increasingly large number of fitting and sampling algorithms available that can be relatively easily interfaced with open-source eclipsing binary packages, like PHOEBE 2. We showcase several fitting methods, including local and global minimizers, nested sampling and machine learning methods, and evaluate their performance on fitting a light curve model with PHOEBE 2.\",\"PeriodicalId\":50617,\"journal\":{\"name\":\"Contributions of the Astronomical Observatory Skalnate Pleso\",\"volume\":\"89 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions of the Astronomical Observatory Skalnate Pleso\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31577/caosp.2020.50.2.539\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions of the Astronomical Observatory Skalnate Pleso","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31577/caosp.2020.50.2.539","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

双星光曲线模型的参数空间是高度复杂和退化的,因此基本的拟合方法往往不能很好(和正确)地估计参数值及其不确定性。另一方面,我们有越来越多的拟合和采样算法可用,可以相对容易地与开源的日食二进制包接口,如PHOEBE 2。我们展示了几种拟合方法,包括局部和全局最小化、嵌套采样和机器学习方法,并评估了它们在PHOEBE 2中拟合光曲线模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond DC and MCMC: alternative algorithms and approaches to fitting light curves
The parameter space of binary star light curve models is highly complex and degenerate, thus basic fitting approaches often fail to yield a good (and correct) estimate of the parameter values and their uncertainties. On the other hand, we have an increasingly large number of fitting and sampling algorithms available that can be relatively easily interfaced with open-source eclipsing binary packages, like PHOEBE 2. We showcase several fitting methods, including local and global minimizers, nested sampling and machine learning methods, and evaluate their performance on fitting a light curve model with PHOEBE 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Contributions of the Astronomical Observatory Skalnate Pleso" (CAOSP) is published by the Astronomical Institute of the Slovak Academy of Sciences (SAS). The journal publishes new results of astronomical and astrophysical research, preferentially covering the fields of Interplanetary Matter, Stellar Astrophysics and Solar Physics. We publish regular papers, expert comments and review contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信