高维高斯平稳过程经验自协方差矩阵的谱测度

Pub Date : 2021-10-16 DOI:10.1142/s2010326322500538
A. Bose, W. Hachem
{"title":"高维高斯平稳过程经验自协方差矩阵的谱测度","authors":"A. Bose, W. Hachem","doi":"10.1142/s2010326322500538","DOIUrl":null,"url":null,"abstract":"Consider the empirical autocovariance matrix at a given non-zero time lag based on observations from a multivariate complex Gaussian stationary time series. The spectral analysis of these autocovariance matrices can be useful in certain statistical problems, such as those related to testing for white noise. We study the behavior of their spectral measures in the asymptotic regime where the time series dimension and the observation window length both grow to infinity, and at the same rate. Following a general framework in the field of the spectral analysis of large random non-Hermitian matrices, at first the probabilistic behavior of the small singular values of the shifted versions of the autocovariance matrix are obtained. This is then used to infer about the large sample behaviour of the empirical spectral measure of the autocovariance matrices at any lag. Matrix orthogonal polynomials on the unit circle play a crucial role in our study.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spectral measure of empirical autocovariance matrices of high dimensional Gaussian stationary processes\",\"authors\":\"A. Bose, W. Hachem\",\"doi\":\"10.1142/s2010326322500538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the empirical autocovariance matrix at a given non-zero time lag based on observations from a multivariate complex Gaussian stationary time series. The spectral analysis of these autocovariance matrices can be useful in certain statistical problems, such as those related to testing for white noise. We study the behavior of their spectral measures in the asymptotic regime where the time series dimension and the observation window length both grow to infinity, and at the same rate. Following a general framework in the field of the spectral analysis of large random non-Hermitian matrices, at first the probabilistic behavior of the small singular values of the shifted versions of the autocovariance matrix are obtained. This is then used to infer about the large sample behaviour of the empirical spectral measure of the autocovariance matrices at any lag. Matrix orthogonal polynomials on the unit circle play a crucial role in our study.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑基于多变量复高斯平稳时间序列的观测值在给定非零时滞下的经验自协方差矩阵。这些自协方差矩阵的谱分析可以用于某些统计问题,例如与白噪声测试有关的统计问题。我们研究了它们的谱测度在时间序列维数和观测窗长都以相同速率增长到无穷大的渐近状态下的行为。根据大随机非厄米矩阵谱分析的一般框架,首先得到自协方差矩阵位移后的小奇异值的概率行为。然后用它来推断自协方差矩阵在任何滞后时的经验谱测量的大样本行为。单位圆上的矩阵正交多项式在我们的研究中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Spectral measure of empirical autocovariance matrices of high dimensional Gaussian stationary processes
Consider the empirical autocovariance matrix at a given non-zero time lag based on observations from a multivariate complex Gaussian stationary time series. The spectral analysis of these autocovariance matrices can be useful in certain statistical problems, such as those related to testing for white noise. We study the behavior of their spectral measures in the asymptotic regime where the time series dimension and the observation window length both grow to infinity, and at the same rate. Following a general framework in the field of the spectral analysis of large random non-Hermitian matrices, at first the probabilistic behavior of the small singular values of the shifted versions of the autocovariance matrix are obtained. This is then used to infer about the large sample behaviour of the empirical spectral measure of the autocovariance matrices at any lag. Matrix orthogonal polynomials on the unit circle play a crucial role in our study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信