不确定性下的生命周期评估:范围审查

Zahir Barahmand, Marianne S. Eikeland
{"title":"不确定性下的生命周期评估:范围审查","authors":"Zahir Barahmand, Marianne S. Eikeland","doi":"10.3390/world3030039","DOIUrl":null,"url":null,"abstract":"Today, life cycle assessment (LCA) is the most widely used approach to model and calculate the environmental impacts of products and processes. The results of LCAs are often said to be deterministic, even though the real-life applications are uncertain and vague. The uncertainty, which may be simply ignored, is one of the key factors influencing the reliability of LCA outcomes. Numerous sources of uncertainty in LCA are classified in various ways, such as parameter and model uncertainty, choices, spatial variability, temporal variability, variability between sources and objects, etc. Through a scoping review, the present study aims to identify and assess the frequency with which LCA studies reflect the uncertainty and what are the tools to cope with the uncertainty to map the knowledge gaps in the field to reveal the challenges and opportunities to have a robust LCA model. It is also investigated which database, methodology, software, etc., have been used in the life cycle assessment process. The results indicate that the most significant sources of uncertainty were in the model and process parameters, data variability, and the use of different methodologies and databases. The probabilistic approach or stochastic modeling, using numerical methods such as Monte Carlo simulation, was the dominating tool to cope with the uncertainty. There were four dominant LCA methodologies: CML, ReCiPe, IMPACT 2002+, and TRACI. The most commonly used LCA software and databases were SimaPro® and Ecoinvent®, respectively.","PeriodicalId":49307,"journal":{"name":"Microlithography World","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Life Cycle Assessment under Uncertainty: A Scoping Review\",\"authors\":\"Zahir Barahmand, Marianne S. Eikeland\",\"doi\":\"10.3390/world3030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, life cycle assessment (LCA) is the most widely used approach to model and calculate the environmental impacts of products and processes. The results of LCAs are often said to be deterministic, even though the real-life applications are uncertain and vague. The uncertainty, which may be simply ignored, is one of the key factors influencing the reliability of LCA outcomes. Numerous sources of uncertainty in LCA are classified in various ways, such as parameter and model uncertainty, choices, spatial variability, temporal variability, variability between sources and objects, etc. Through a scoping review, the present study aims to identify and assess the frequency with which LCA studies reflect the uncertainty and what are the tools to cope with the uncertainty to map the knowledge gaps in the field to reveal the challenges and opportunities to have a robust LCA model. It is also investigated which database, methodology, software, etc., have been used in the life cycle assessment process. The results indicate that the most significant sources of uncertainty were in the model and process parameters, data variability, and the use of different methodologies and databases. The probabilistic approach or stochastic modeling, using numerical methods such as Monte Carlo simulation, was the dominating tool to cope with the uncertainty. There were four dominant LCA methodologies: CML, ReCiPe, IMPACT 2002+, and TRACI. The most commonly used LCA software and databases were SimaPro® and Ecoinvent®, respectively.\",\"PeriodicalId\":49307,\"journal\":{\"name\":\"Microlithography World\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microlithography World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/world3030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microlithography World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/world3030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

今天,生命周期评价(LCA)是最广泛使用的方法来模拟和计算产品和过程的环境影响。lca的结果通常被认为是确定的,尽管现实生活中的应用是不确定和模糊的。不确定性是影响LCA结果可靠性的关键因素之一,它可能被简单地忽略。对LCA中众多不确定性源进行了多种分类,如参数和模型的不确定性、选择、空间变异性、时间变异性、源与目标之间的变异性等。通过范围审查,本研究旨在识别和评估LCA研究反映不确定性的频率,以及应对不确定性的工具是什么,以绘制该领域的知识差距,揭示建立稳健的LCA模型的挑战和机遇。研究了在生命周期评估过程中使用的数据库、方法、软件等。结果表明,最重要的不确定性来源是模型和工艺参数、数据可变性以及使用不同的方法和数据库。概率方法或随机建模,使用数值方法,如蒙特卡罗模拟,是处理不确定性的主要工具。有四种主要的LCA方法:CML、ReCiPe、IMPACT 2002+和TRACI。最常用的LCA软件和数据库分别是SimaPro®和Ecoinvent®。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life Cycle Assessment under Uncertainty: A Scoping Review
Today, life cycle assessment (LCA) is the most widely used approach to model and calculate the environmental impacts of products and processes. The results of LCAs are often said to be deterministic, even though the real-life applications are uncertain and vague. The uncertainty, which may be simply ignored, is one of the key factors influencing the reliability of LCA outcomes. Numerous sources of uncertainty in LCA are classified in various ways, such as parameter and model uncertainty, choices, spatial variability, temporal variability, variability between sources and objects, etc. Through a scoping review, the present study aims to identify and assess the frequency with which LCA studies reflect the uncertainty and what are the tools to cope with the uncertainty to map the knowledge gaps in the field to reveal the challenges and opportunities to have a robust LCA model. It is also investigated which database, methodology, software, etc., have been used in the life cycle assessment process. The results indicate that the most significant sources of uncertainty were in the model and process parameters, data variability, and the use of different methodologies and databases. The probabilistic approach or stochastic modeling, using numerical methods such as Monte Carlo simulation, was the dominating tool to cope with the uncertainty. There were four dominant LCA methodologies: CML, ReCiPe, IMPACT 2002+, and TRACI. The most commonly used LCA software and databases were SimaPro® and Ecoinvent®, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信