随机方差缩减优化算法在PET迭代重建中的应用

R. Twyman, S. Arridge, Bangti Jin, B. Hutton, L. Brusaferri, K. Thielemans
{"title":"随机方差缩减优化算法在PET迭代重建中的应用","authors":"R. Twyman, S. Arridge, Bangti Jin, B. Hutton, L. Brusaferri, K. Thielemans","doi":"10.1109/NSS/MIC42677.2020.9508105","DOIUrl":null,"url":null,"abstract":"Penalised PET image reconstruction methods are often accelerated with the use of only a subset of the data at each update. It is known that many subset algorithms, such as Ordered Subset Expectation Maximisation, do not converge to a single solution but to a limit cycle, which can lead to variations between subsequent image estimates. A new class of stochastic variance reduction optimisation algorithms have been recently proposed for general optimisation problems. These methods aim to reduce the subset update variance by incorporating previous subset gradients into the update direction computation. This work applies three of these algorithms to iterative PET penalised reconstruction and exhibits superior performance to standard deterministic reconstruction methods after only a few epochs.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"15 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Variance Reduction Optimisation Algorithms Applied to Iterative PET Reconstruction\",\"authors\":\"R. Twyman, S. Arridge, Bangti Jin, B. Hutton, L. Brusaferri, K. Thielemans\",\"doi\":\"10.1109/NSS/MIC42677.2020.9508105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penalised PET image reconstruction methods are often accelerated with the use of only a subset of the data at each update. It is known that many subset algorithms, such as Ordered Subset Expectation Maximisation, do not converge to a single solution but to a limit cycle, which can lead to variations between subsequent image estimates. A new class of stochastic variance reduction optimisation algorithms have been recently proposed for general optimisation problems. These methods aim to reduce the subset update variance by incorporating previous subset gradients into the update direction computation. This work applies three of these algorithms to iterative PET penalised reconstruction and exhibits superior performance to standard deterministic reconstruction methods after only a few epochs.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"15 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9508105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

惩罚的PET图像重建方法通常在每次更新时仅使用数据的子集来加速。众所周知,许多子集算法,如有序子集期望最大化,不会收敛到单个解,而是收敛到极限环,这可能导致后续图像估计之间的变化。一类新的随机方差减少优化算法最近被提出用于一般优化问题。这些方法的目的是通过将先前的子集梯度纳入更新方向计算来减小子集更新方差。本工作将其中三种算法应用于迭代PET惩罚重建,并在几个epoch后显示出优于标准确定性重建方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Variance Reduction Optimisation Algorithms Applied to Iterative PET Reconstruction
Penalised PET image reconstruction methods are often accelerated with the use of only a subset of the data at each update. It is known that many subset algorithms, such as Ordered Subset Expectation Maximisation, do not converge to a single solution but to a limit cycle, which can lead to variations between subsequent image estimates. A new class of stochastic variance reduction optimisation algorithms have been recently proposed for general optimisation problems. These methods aim to reduce the subset update variance by incorporating previous subset gradients into the update direction computation. This work applies three of these algorithms to iterative PET penalised reconstruction and exhibits superior performance to standard deterministic reconstruction methods after only a few epochs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信