计算非交换希尔伯特级数

R. L. Scala, S. K. Tiwari
{"title":"计算非交换希尔伯特级数","authors":"R. L. Scala, S. K. Tiwari","doi":"10.1145/3338637.3338645","DOIUrl":null,"url":null,"abstract":"We propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the Hilbert series have a rational sum. Efficient variants of the methods are also developed for the truncations of infinite-dimensional algebras which provide approximations of possibly irrational Hilbert series. Moreover, we provide a characterization of the finite-dimensional algebras in terms of the nilpotency of a key matrix involved in the computations. Finally, we present a well-tested and complete implementation for the computation of graded and multigraded Hilbert series which has been developed in the kernel of the computer algebra system Singular (for the details, see preprint[1]).","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"12 1","pages":"136-138"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing noncommutative Hilbert series\",\"authors\":\"R. L. Scala, S. K. Tiwari\",\"doi\":\"10.1145/3338637.3338645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the Hilbert series have a rational sum. Efficient variants of the methods are also developed for the truncations of infinite-dimensional algebras which provide approximations of possibly irrational Hilbert series. Moreover, we provide a characterization of the finite-dimensional algebras in terms of the nilpotency of a key matrix involved in the computations. Finally, we present a well-tested and complete implementation for the computation of graded and multigraded Hilbert series which has been developed in the kernel of the computer algebra system Singular (for the details, see preprint[1]).\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"12 1\",\"pages\":\"136-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338637.3338645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了在自由结合代数上计算多重右模的希尔伯特级数的方法。特别地,我们计算了非交换多阶代数的这种级数。利用正则语言理论的结果,我们给出了这些方法有效的条件,从而使得希尔伯特级数有一个有理和。这些方法的有效变体也被用于无限维代数的截断,这些代数提供了可能是无理数的希尔伯特级数的近似值。此外,我们提供了有限维代数在计算中涉及的一个关键矩阵的幂零性的表征。最后,我们提出了在计算机代数系统Singular的内核中开发的一个经过良好测试和完整的分级和多重分级希尔伯特级数的计算实现(详细信息,参见预印本[1])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing noncommutative Hilbert series
We propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the Hilbert series have a rational sum. Efficient variants of the methods are also developed for the truncations of infinite-dimensional algebras which provide approximations of possibly irrational Hilbert series. Moreover, we provide a characterization of the finite-dimensional algebras in terms of the nilpotency of a key matrix involved in the computations. Finally, we present a well-tested and complete implementation for the computation of graded and multigraded Hilbert series which has been developed in the kernel of the computer algebra system Singular (for the details, see preprint[1]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信