Xiaofang Zhang, Xiujuan Lin, Rui Guo, C. Yang, Hui Zhao, Mingyu Zhang, Yan Wang, Xin Cheng, Shi-feng Huang
{"title":"预应力层对球形换能器声辐射性能的影响","authors":"Xiaofang Zhang, Xiujuan Lin, Rui Guo, C. Yang, Hui Zhao, Mingyu Zhang, Yan Wang, Xin Cheng, Shi-feng Huang","doi":"10.1142/s2010135x22410041","DOIUrl":null,"url":null,"abstract":"To improve the acoustic radiation performance of the spherical transducer, a prestressed layer is formed in the transducer through fiber winding. The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress ([Formula: see text][Formula: see text]) and acoustic impedance, respectively. First, a theoretical estimation of [Formula: see text][Formula: see text] is established with a thin shell approximation of the prestressed layer. Then, the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer. Further, the ideal effects of [Formula: see text][Formula: see text] on the sound radiation performances of the transducer are analyzed through finite element analysis (FEA). Finally, four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer. The results show that with the growth of [Formula: see text][Formula: see text], the acoustic impedance of the prestressed layer grows, mitigating the enormous impedance mismatch between the piezoelectric ceramic and water, while increasing attenuation of the acoustic energy, resulting in a peak value of the maximum transmitting voltage response (TVR[Formula: see text]) at 1.18 MPa. The maximum drive voltage increases with [Formula: see text][Formula: see text], leading to a steady growth of the maximum transmitting sound level (SL[Formula: see text]), with a noticeable ascend of 3.9 dB at a 3.44 MPa [Formula: see text][Formula: see text]. This is a strong credibility that the prestressed layer could improve the sound radiation performance of the spherical transducer.","PeriodicalId":14871,"journal":{"name":"Journal of Advanced Dielectrics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of the prestressed layer on spherical transducer in sound radiation performance\",\"authors\":\"Xiaofang Zhang, Xiujuan Lin, Rui Guo, C. Yang, Hui Zhao, Mingyu Zhang, Yan Wang, Xin Cheng, Shi-feng Huang\",\"doi\":\"10.1142/s2010135x22410041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the acoustic radiation performance of the spherical transducer, a prestressed layer is formed in the transducer through fiber winding. The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress ([Formula: see text][Formula: see text]) and acoustic impedance, respectively. First, a theoretical estimation of [Formula: see text][Formula: see text] is established with a thin shell approximation of the prestressed layer. Then, the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer. Further, the ideal effects of [Formula: see text][Formula: see text] on the sound radiation performances of the transducer are analyzed through finite element analysis (FEA). Finally, four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer. The results show that with the growth of [Formula: see text][Formula: see text], the acoustic impedance of the prestressed layer grows, mitigating the enormous impedance mismatch between the piezoelectric ceramic and water, while increasing attenuation of the acoustic energy, resulting in a peak value of the maximum transmitting voltage response (TVR[Formula: see text]) at 1.18 MPa. The maximum drive voltage increases with [Formula: see text][Formula: see text], leading to a steady growth of the maximum transmitting sound level (SL[Formula: see text]), with a noticeable ascend of 3.9 dB at a 3.44 MPa [Formula: see text][Formula: see text]. This is a strong credibility that the prestressed layer could improve the sound radiation performance of the spherical transducer.\",\"PeriodicalId\":14871,\"journal\":{\"name\":\"Journal of Advanced Dielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Dielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010135x22410041\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010135x22410041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Influence of the prestressed layer on spherical transducer in sound radiation performance
To improve the acoustic radiation performance of the spherical transducer, a prestressed layer is formed in the transducer through fiber winding. The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress ([Formula: see text][Formula: see text]) and acoustic impedance, respectively. First, a theoretical estimation of [Formula: see text][Formula: see text] is established with a thin shell approximation of the prestressed layer. Then, the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer. Further, the ideal effects of [Formula: see text][Formula: see text] on the sound radiation performances of the transducer are analyzed through finite element analysis (FEA). Finally, four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer. The results show that with the growth of [Formula: see text][Formula: see text], the acoustic impedance of the prestressed layer grows, mitigating the enormous impedance mismatch between the piezoelectric ceramic and water, while increasing attenuation of the acoustic energy, resulting in a peak value of the maximum transmitting voltage response (TVR[Formula: see text]) at 1.18 MPa. The maximum drive voltage increases with [Formula: see text][Formula: see text], leading to a steady growth of the maximum transmitting sound level (SL[Formula: see text]), with a noticeable ascend of 3.9 dB at a 3.44 MPa [Formula: see text][Formula: see text]. This is a strong credibility that the prestressed layer could improve the sound radiation performance of the spherical transducer.
期刊介绍:
The Journal of Advanced Dielectrics is an international peer-reviewed journal for original contributions on the understanding and applications of dielectrics in modern electronic devices and systems. The journal seeks to provide an interdisciplinary forum for the rapid communication of novel research of high quality in, but not limited to, the following topics: Fundamentals of dielectrics (ab initio or first-principles calculations, density functional theory, phenomenological approaches). Polarization and related phenomena (spontaneous polarization, domain structure, polarization reversal). Dielectric relaxation (universal relaxation law, relaxor ferroelectrics, giant permittivity, flexoelectric effect). Ferroelectric materials and devices (single crystals and ceramics). Thin/thick films and devices (ferroelectric memory devices, capacitors). Piezoelectric materials and applications (lead-based piezo-ceramics and crystals, lead-free piezoelectrics). Pyroelectric materials and devices Multiferroics (single phase multiferroics, composite ferromagnetic ferroelectric materials). Electrooptic and photonic materials. Energy harvesting and storage materials (polymer, composite, super-capacitor). Phase transitions and structural characterizations. Microwave and milimeterwave dielectrics. Nanostructure, size effects and characterizations. Engineering dielectrics for high voltage applications (insulation, electrical breakdown). Modeling (microstructure evolution and microstructure-property relationships, multiscale modeling of dielectrics).