Jie Wang, Jun Nishiyama, Paula Parra-Bueno, Elwy Okaz, Goksu Oz, Xiaodan Liu, Tetsuya Watabe, Irena Suponitsky-Kroyter, Timothy E McGraw, Erzsebet M Szatmari, Ryohei Yasuda
{"title":"Rab10失活促进AMPAR运输和长期增强过程中的脊柱增大。","authors":"Jie Wang, Jun Nishiyama, Paula Parra-Bueno, Elwy Okaz, Goksu Oz, Xiaodan Liu, Tetsuya Watabe, Irena Suponitsky-Kroyter, Timothy E McGraw, Erzsebet M Szatmari, Ryohei Yasuda","doi":"10.1101/2022.05.17.492345","DOIUrl":null,"url":null,"abstract":"<p><p>Rab-dependent membrane trafficking is critical for changing the structure and function of dendritic spines during synaptic plasticity. Here, we developed highly sensitive sensors to monitor Rab protein activity in single dendritic spines undergoing structural long-term potentiation (sLTP) in rodent organotypic hippocampal slices. During sLTP, Rab10 was persistently inactivated (>30 min) in the stimulated spines, whereas Rab4 was transiently activated over ∼5 min. Inhibiting or deleting Rab10 enhanced sLTP, electrophysiological LTP and AMPA receptor (AMPAR) trafficking during sLTP. In contrast, disrupting Rab4 impaired sLTP only in the first few minutes, and decreased AMPAR trafficking during sLTP. Thus, our results suggest that Rab10 and Rab4 oppositely regulate AMPAR trafficking during sLTP, and inactivation of Rab10 signaling facilitates the induction of LTP and associated spine structural plasticity.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rab10 inactivation promotes AMPAR trafficking and spine enlargement during long-term potentiation.\",\"authors\":\"Jie Wang, Jun Nishiyama, Paula Parra-Bueno, Elwy Okaz, Goksu Oz, Xiaodan Liu, Tetsuya Watabe, Irena Suponitsky-Kroyter, Timothy E McGraw, Erzsebet M Szatmari, Ryohei Yasuda\",\"doi\":\"10.1101/2022.05.17.492345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rab-dependent membrane trafficking is critical for changing the structure and function of dendritic spines during synaptic plasticity. Here, we developed highly sensitive sensors to monitor Rab protein activity in single dendritic spines undergoing structural long-term potentiation (sLTP) in rodent organotypic hippocampal slices. During sLTP, Rab10 was persistently inactivated (>30 min) in the stimulated spines, whereas Rab4 was transiently activated over ∼5 min. Inhibiting or deleting Rab10 enhanced sLTP, electrophysiological LTP and AMPA receptor (AMPAR) trafficking during sLTP. In contrast, disrupting Rab4 impaired sLTP only in the first few minutes, and decreased AMPAR trafficking during sLTP. Thus, our results suggest that Rab10 and Rab4 oppositely regulate AMPAR trafficking during sLTP, and inactivation of Rab10 signaling facilitates the induction of LTP and associated spine structural plasticity.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.05.17.492345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.05.17.492345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rab10 inactivation promotes AMPAR trafficking and spine enlargement during long-term potentiation.
Rab-dependent membrane trafficking is critical for changing the structure and function of dendritic spines during synaptic plasticity. Here, we developed highly sensitive sensors to monitor Rab protein activity in single dendritic spines undergoing structural long-term potentiation (sLTP) in rodent organotypic hippocampal slices. During sLTP, Rab10 was persistently inactivated (>30 min) in the stimulated spines, whereas Rab4 was transiently activated over ∼5 min. Inhibiting or deleting Rab10 enhanced sLTP, electrophysiological LTP and AMPA receptor (AMPAR) trafficking during sLTP. In contrast, disrupting Rab4 impaired sLTP only in the first few minutes, and decreased AMPAR trafficking during sLTP. Thus, our results suggest that Rab10 and Rab4 oppositely regulate AMPAR trafficking during sLTP, and inactivation of Rab10 signaling facilitates the induction of LTP and associated spine structural plasticity.