{"title":"由大维随机矩阵特征向量定义的随机函数集合的弱收敛性","authors":"J. W. Silverstein","doi":"10.1142/s2010326322500332","DOIUrl":null,"url":null,"abstract":"For each n, let Un be Haar distributed on the group of n × n unitary matrices. Let xn,1, . . . ,xn,m denote orthogonal nonrandom unit vectors in C n and let un,k = (uk, . . . , u n k) ∗ = U∗ nxn,k, k = 1, . . . , m. Define the following functions on [0,1]: X k,k n (t) = √ n ∑[nt] i=1(|uk|− 1 n ),X ′ n (t) = √ 2n ∑[nt] i=1 ū i ku i k′ , k < k ′. Then it is proven thatX n ,RXk,k ′ n , IXk,k′ n , considered as random processes in D[0, 1], converge weakly, as n → ∞, to m independent copies of Brownian bridge. The same result holds for the m(m + 1)/2 processes in the real case, where On is real orthogonal Haar distributed and xn,i ∈ R, with √ n in X n and √ 2n in X ′ n replaced with √ n 2 and √ n, respectively. This latter result will be shown to hold for the matrix of eigenvectors of Mn = (1/s)VnV T n where Vn is n × s consisting of the entries of {vij}, i, j = 1, 2, . . . , i.i.d. standardized and symmetrically distributed, with each xn,i = {±1/ √ n, . . . ,±1/√n}, and n/s→ y > 0 as n→ ∞. This result extends the result in J.W. Silverstein Ann. Probab. 18 1174-1194. These results are applied to the detection problem in sampling random vectors mostly made of noise and detecting whether the sample includes a nonrandom vector. The matrix Bn = θvnv ∗ n + Sn is studied where Sn is Hermitian or symmetric and nonnegative definite with either its matrix of eigenvectors being Haar distributed, or Sn = Mn, θ > 0 nonrandom, and vn is a nonrandom unit vector. Results are derived on the distributional behavior of the inner product of vectors orthogonal to vn with the eigenvector associated with the largest eigenvalue of Bn.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weak Convergence of a Collection of Random Functions Defined by the Eigenvectors of Large Dimensional Random Matrices\",\"authors\":\"J. W. Silverstein\",\"doi\":\"10.1142/s2010326322500332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each n, let Un be Haar distributed on the group of n × n unitary matrices. Let xn,1, . . . ,xn,m denote orthogonal nonrandom unit vectors in C n and let un,k = (uk, . . . , u n k) ∗ = U∗ nxn,k, k = 1, . . . , m. Define the following functions on [0,1]: X k,k n (t) = √ n ∑[nt] i=1(|uk|− 1 n ),X ′ n (t) = √ 2n ∑[nt] i=1 ū i ku i k′ , k < k ′. Then it is proven thatX n ,RXk,k ′ n , IXk,k′ n , considered as random processes in D[0, 1], converge weakly, as n → ∞, to m independent copies of Brownian bridge. The same result holds for the m(m + 1)/2 processes in the real case, where On is real orthogonal Haar distributed and xn,i ∈ R, with √ n in X n and √ 2n in X ′ n replaced with √ n 2 and √ n, respectively. This latter result will be shown to hold for the matrix of eigenvectors of Mn = (1/s)VnV T n where Vn is n × s consisting of the entries of {vij}, i, j = 1, 2, . . . , i.i.d. standardized and symmetrically distributed, with each xn,i = {±1/ √ n, . . . ,±1/√n}, and n/s→ y > 0 as n→ ∞. This result extends the result in J.W. Silverstein Ann. Probab. 18 1174-1194. These results are applied to the detection problem in sampling random vectors mostly made of noise and detecting whether the sample includes a nonrandom vector. The matrix Bn = θvnv ∗ n + Sn is studied where Sn is Hermitian or symmetric and nonnegative definite with either its matrix of eigenvectors being Haar distributed, or Sn = Mn, θ > 0 nonrandom, and vn is a nonrandom unit vector. Results are derived on the distributional behavior of the inner product of vectors orthogonal to vn with the eigenvector associated with the largest eigenvalue of Bn.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
为每n,让联合国成为Haar集团》按on n×n unitary matrices。我们走xn 1…第xn,m, don ' t be orthogonal unrandom单位vectors在C, u n k)∗= u∗nxn, k, k = 1,。。,《跟踪functions on [0.1 m .定义:X k, k n (t) =√n∑(nt) i = 1 (| uk | n−1),X′n (t) =√2n∑(nt) i = 1 kū我我k′,< k′。然后是proven thatX n, k′n, IXk RXk k′n,美国认为随机processes in D[0, 1],美国converge虚弱地n→∞,到公元独立报copies of Brownian大桥。不变论点珍藏》(m + 1) / 2 processes in The real凯斯,真正在哪里是orthogonal Haar按和n, i∈R,在X√n n和√2n在X′n replaced 2√n和√n, respectively。这个后期圣徒论点将展示拥抱eigenvectors矩阵》为Mn = (1 / n) VnV T s哪里Vn是n×s consisting of之。{vij}, i, j = 1, 2,。。, i . i . d . standardized和symmetrically按,每一起,i ={±1 /√n个,。。,±1 /√n的和美国n / s > 0 y→n→∞。这是西尔弗斯坦·安的最新提议。181174 -1194号提案。这些结果大多应用于随机标本的发现问题,基本上是制造噪音,如果样本包括一个不随机的向量,就会发现。矩阵Bn =θvnv∗n + Sn是studied Sn在哪里Hermitian或symmetric和nonnegative当然不管它的矩阵eigenvectors身为Haar按,或Sn = Mn,θa > 0 nonrandom,和vn是nonrandom单位向量。结果导致了从内部生产到vn的正规性行为的传播,与Bn的最高等级关系有关。
Weak Convergence of a Collection of Random Functions Defined by the Eigenvectors of Large Dimensional Random Matrices
For each n, let Un be Haar distributed on the group of n × n unitary matrices. Let xn,1, . . . ,xn,m denote orthogonal nonrandom unit vectors in C n and let un,k = (uk, . . . , u n k) ∗ = U∗ nxn,k, k = 1, . . . , m. Define the following functions on [0,1]: X k,k n (t) = √ n ∑[nt] i=1(|uk|− 1 n ),X ′ n (t) = √ 2n ∑[nt] i=1 ū i ku i k′ , k < k ′. Then it is proven thatX n ,RXk,k ′ n , IXk,k′ n , considered as random processes in D[0, 1], converge weakly, as n → ∞, to m independent copies of Brownian bridge. The same result holds for the m(m + 1)/2 processes in the real case, where On is real orthogonal Haar distributed and xn,i ∈ R, with √ n in X n and √ 2n in X ′ n replaced with √ n 2 and √ n, respectively. This latter result will be shown to hold for the matrix of eigenvectors of Mn = (1/s)VnV T n where Vn is n × s consisting of the entries of {vij}, i, j = 1, 2, . . . , i.i.d. standardized and symmetrically distributed, with each xn,i = {±1/ √ n, . . . ,±1/√n}, and n/s→ y > 0 as n→ ∞. This result extends the result in J.W. Silverstein Ann. Probab. 18 1174-1194. These results are applied to the detection problem in sampling random vectors mostly made of noise and detecting whether the sample includes a nonrandom vector. The matrix Bn = θvnv ∗ n + Sn is studied where Sn is Hermitian or symmetric and nonnegative definite with either its matrix of eigenvectors being Haar distributed, or Sn = Mn, θ > 0 nonrandom, and vn is a nonrandom unit vector. Results are derived on the distributional behavior of the inner product of vectors orthogonal to vn with the eigenvector associated with the largest eigenvalue of Bn.