基于马尔可夫链的预测范围查询剪枝方法

Xiaofeng Xu, Li Xiong, V. Sunderam, Yonghui Xiao
{"title":"基于马尔可夫链的预测范围查询剪枝方法","authors":"Xiaofeng Xu, Li Xiong, V. Sunderam, Yonghui Xiao","doi":"10.1145/2996913.2996922","DOIUrl":null,"url":null,"abstract":"Predictive range queries retrieve objects in a certain spatial region at a (future) prediction time. Processing predictive range queries on large moving object databases is expensive. Thus effective pruning is important, especially for long-term predictive queries since accurately predicting long-term future behaviors of moving objects is challenging and expensive. In this work, we propose a pruning method that effectively reduces the candidate set for predictive range queries based on (high-order) Markov chain models learned from historical trajectories. The key to our method is to devise compressed representations for sparse multi-dimensional matrices, and leverage efficient algorithms for matrix computations. Experimental evaluations show that our approach significantly outperforms other pruning methods in terms of efficiency and precision.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Markov chain based pruning method for predictive range queries\",\"authors\":\"Xiaofeng Xu, Li Xiong, V. Sunderam, Yonghui Xiao\",\"doi\":\"10.1145/2996913.2996922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive range queries retrieve objects in a certain spatial region at a (future) prediction time. Processing predictive range queries on large moving object databases is expensive. Thus effective pruning is important, especially for long-term predictive queries since accurately predicting long-term future behaviors of moving objects is challenging and expensive. In this work, we propose a pruning method that effectively reduces the candidate set for predictive range queries based on (high-order) Markov chain models learned from historical trajectories. The key to our method is to devise compressed representations for sparse multi-dimensional matrices, and leverage efficient algorithms for matrix computations. Experimental evaluations show that our approach significantly outperforms other pruning methods in terms of efficiency and precision.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

预测范围查询在(未来)预测时间检索特定空间区域中的对象。在大型移动对象数据库上处理预测范围查询是非常昂贵的。因此,有效的修剪非常重要,特别是对于长期预测查询,因为准确预测移动对象的长期未来行为是具有挑战性和昂贵的。在这项工作中,我们提出了一种修剪方法,该方法基于从历史轨迹中学习的(高阶)马尔可夫链模型,有效地减少了预测范围查询的候选集。我们的方法的关键是为稀疏的多维矩阵设计压缩表示,并利用有效的算法进行矩阵计算。实验评估表明,我们的方法在效率和精度方面明显优于其他修剪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Markov chain based pruning method for predictive range queries
Predictive range queries retrieve objects in a certain spatial region at a (future) prediction time. Processing predictive range queries on large moving object databases is expensive. Thus effective pruning is important, especially for long-term predictive queries since accurately predicting long-term future behaviors of moving objects is challenging and expensive. In this work, we propose a pruning method that effectively reduces the candidate set for predictive range queries based on (high-order) Markov chain models learned from historical trajectories. The key to our method is to devise compressed representations for sparse multi-dimensional matrices, and leverage efficient algorithms for matrix computations. Experimental evaluations show that our approach significantly outperforms other pruning methods in terms of efficiency and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信