在水平分区数据上保护隐私的PCA

Mohammad Al-Rubaie, Pei-Yuan Wu, J. M. Chang, S. Kung
{"title":"在水平分区数据上保护隐私的PCA","authors":"Mohammad Al-Rubaie, Pei-Yuan Wu, J. M. Chang, S. Kung","doi":"10.1109/DESEC.2017.8073817","DOIUrl":null,"url":null,"abstract":"Private data is used on daily basis by a variety of applications where machine learning algorithms predict our shopping patterns and movie preferences among other things. Principal component analysis (PCA) is a widely used method to reduce the dimensionality of data. Reducing the data dimension is essential for data visualization, preventing overfitting and resisting reconstruction attacks. In this paper, we propose methods that would enable the PCA computation to be performed on horizontally-partitioned data among multiple data owners without requiring them to stay online for the execution of the protocol. To address this problem, we propose a new protocol for computing the total scatter matrix using additive homomorphic encryption, and performing the Eigen decomposition using Garbled circuits. Our hybrid protocol does not reveal any of the data owner's input; thus protecting their privacy. We implemented our protocols using Java and Obliv-C, and conducted experiments using public datasets. We show that our protocols are efficient, and preserve the privacy while maintaining the accuracy.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"88 1","pages":"280-287"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Privacy-preserving PCA on horizontally-partitioned data\",\"authors\":\"Mohammad Al-Rubaie, Pei-Yuan Wu, J. M. Chang, S. Kung\",\"doi\":\"10.1109/DESEC.2017.8073817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private data is used on daily basis by a variety of applications where machine learning algorithms predict our shopping patterns and movie preferences among other things. Principal component analysis (PCA) is a widely used method to reduce the dimensionality of data. Reducing the data dimension is essential for data visualization, preventing overfitting and resisting reconstruction attacks. In this paper, we propose methods that would enable the PCA computation to be performed on horizontally-partitioned data among multiple data owners without requiring them to stay online for the execution of the protocol. To address this problem, we propose a new protocol for computing the total scatter matrix using additive homomorphic encryption, and performing the Eigen decomposition using Garbled circuits. Our hybrid protocol does not reveal any of the data owner's input; thus protecting their privacy. We implemented our protocols using Java and Obliv-C, and conducted experiments using public datasets. We show that our protocols are efficient, and preserve the privacy while maintaining the accuracy.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"88 1\",\"pages\":\"280-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

私人数据每天被各种各样的应用程序使用,其中机器学习算法预测我们的购物模式和电影偏好等等。主成分分析(PCA)是一种广泛使用的数据降维方法。降低数据维数对于数据可视化、防止过拟合和抵抗重构攻击至关重要。在本文中,我们提出了一些方法,使PCA计算能够在多个数据所有者之间的水平分区数据上执行,而不需要他们保持在线以执行协议。为了解决这个问题,我们提出了一种新的协议,使用加性同态加密计算总散射矩阵,并使用乱码电路进行特征分解。我们的混合协议不透露任何数据所有者的输入;从而保护他们的隐私。我们使用Java和ovb - c实现协议,并使用公共数据集进行实验。结果表明,我们的协议是有效的,在保持准确性的同时保护了隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving PCA on horizontally-partitioned data
Private data is used on daily basis by a variety of applications where machine learning algorithms predict our shopping patterns and movie preferences among other things. Principal component analysis (PCA) is a widely used method to reduce the dimensionality of data. Reducing the data dimension is essential for data visualization, preventing overfitting and resisting reconstruction attacks. In this paper, we propose methods that would enable the PCA computation to be performed on horizontally-partitioned data among multiple data owners without requiring them to stay online for the execution of the protocol. To address this problem, we propose a new protocol for computing the total scatter matrix using additive homomorphic encryption, and performing the Eigen decomposition using Garbled circuits. Our hybrid protocol does not reveal any of the data owner's input; thus protecting their privacy. We implemented our protocols using Java and Obliv-C, and conducted experiments using public datasets. We show that our protocols are efficient, and preserve the privacy while maintaining the accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信