香豆素衍生物是治疗抑郁症的新关键吗?单胺氧化酶a对香豆素衍生物的硅锁拟合分析

D. Karaman, K. Yelekçi, S. Altuntas
{"title":"香豆素衍生物是治疗抑郁症的新关键吗?单胺氧化酶a对香豆素衍生物的硅锁拟合分析","authors":"D. Karaman, K. Yelekçi, S. Altuntas","doi":"10.14805/jphchem.2020.art119","DOIUrl":null,"url":null,"abstract":"The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Ki values 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.","PeriodicalId":14317,"journal":{"name":"International Journal of Pharmaceutical Chemistry","volume":"312 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are Coumarin Derivatives The New Keys in Depression Treatment? In silico Key-lock Fitting Analysis of Coumarin Derivatives with Monoamine Oxidase-A\",\"authors\":\"D. Karaman, K. Yelekçi, S. Altuntas\",\"doi\":\"10.14805/jphchem.2020.art119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Ki values 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.\",\"PeriodicalId\":14317,\"journal\":{\"name\":\"International Journal of Pharmaceutical Chemistry\",\"volume\":\"312 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14805/jphchem.2020.art119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14805/jphchem.2020.art119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

配体-蛋白质相互作用的研究与硅分子模型在原子水平上的研究为了解抗抑郁候选药物的药代动力学代谢提供了机会。mao有两个同工异构体,分别是MAO-A和MAO-B,负责催化神经胺。选择第3、5、7个位置放置5个不同的边组。利用AutoDock4.2软件对这125个新化合物M系列中的每个配体进行10次对接。对接结果通过Discovery Studio 3.1 (Biovia Inc.)进行分析。总的来说,本研究为新型抗抑郁药物的开发提供了重要的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Coumarin Derivatives The New Keys in Depression Treatment? In silico Key-lock Fitting Analysis of Coumarin Derivatives with Monoamine Oxidase-A
The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Ki values 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信