锡纳朋火山灰与腐植酸复合对湿法二氧化硅肥料特性的影响

V. Apriyani, Thomson A.S. Girsang, Ribka J Sirait, Lisnawaty Simatupang
{"title":"锡纳朋火山灰与腐植酸复合对湿法二氧化硅肥料特性的影响","authors":"V. Apriyani, Thomson A.S. Girsang, Ribka J Sirait, Lisnawaty Simatupang","doi":"10.24114/ijcst.v2i2.13998","DOIUrl":null,"url":null,"abstract":"Volcanic ash from Mount Sinabung has a large silica (SiO2) content of 69,93% and contains minerals needed by soil and plants. This potential cannot be directly utilized due to the acidic nature of volcanic ash which can damage plants. To be used as fertilizer, the process can be accelerated by adding humic acid from chicken manure. So the purpose of this study is to manufacture humic silica fertilizer by combining volcanic ash with humic acid from chicken manure and and  the characteristics of humic silica fertilizer. In this study a method of extracting humic acid from chicken manure was used using sodium hydroxide (NaOH) 0,25 M solution and mixing volcanic ash with humic acid. The results of humic acid extract from chicken manure were then combined with volcanic ash from sinabung. Nutrients from the combination obtained at variation 60:40 with the highest organic C were 1.37%, N total 0.24%, Phosphate 20.64 ppm and Potassium 0.664 me / 100g with pH fertilizer 6 and crumb texture and free neutral which indicates the fertilizer is ready to use.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combination of Sinabung Volcanic Ash and Humic Acid Against Characteristics of Humid Silica Fertilizers\",\"authors\":\"V. Apriyani, Thomson A.S. Girsang, Ribka J Sirait, Lisnawaty Simatupang\",\"doi\":\"10.24114/ijcst.v2i2.13998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volcanic ash from Mount Sinabung has a large silica (SiO2) content of 69,93% and contains minerals needed by soil and plants. This potential cannot be directly utilized due to the acidic nature of volcanic ash which can damage plants. To be used as fertilizer, the process can be accelerated by adding humic acid from chicken manure. So the purpose of this study is to manufacture humic silica fertilizer by combining volcanic ash with humic acid from chicken manure and and  the characteristics of humic silica fertilizer. In this study a method of extracting humic acid from chicken manure was used using sodium hydroxide (NaOH) 0,25 M solution and mixing volcanic ash with humic acid. The results of humic acid extract from chicken manure were then combined with volcanic ash from sinabung. Nutrients from the combination obtained at variation 60:40 with the highest organic C were 1.37%, N total 0.24%, Phosphate 20.64 ppm and Potassium 0.664 me / 100g with pH fertilizer 6 and crumb texture and free neutral which indicates the fertilizer is ready to use.\",\"PeriodicalId\":13519,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/ijcst.v2i2.13998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v2i2.13998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

锡纳朋火山的火山灰含有大量二氧化硅(SiO2),含量高达69.93%,其中含有土壤和植物所需的矿物质。这种潜力不能直接利用,因为火山灰的酸性会损害植物。作为肥料,加入鸡粪中的腐植酸可以加速这一过程。因此,本研究的目的是利用火山灰与鸡粪中的腐植酸结合,制备腐植酸硅肥,并分析腐植酸硅肥的特性。采用氢氧化钠(NaOH) 0,25 M溶液,将火山灰与腐植酸混合,从鸡粪中提取腐植酸。然后将鸡粪腐植酸提取液与锡纳朋火山的火山灰相结合。在60:40变化条件下,有机碳最高的组合为1.37%,总氮为0.24%,磷酸盐为20.64 ppm,钾为0.664 me / 100g, pH值为6,颗粒状,游离中性,表明肥料可以使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of Sinabung Volcanic Ash and Humic Acid Against Characteristics of Humid Silica Fertilizers
Volcanic ash from Mount Sinabung has a large silica (SiO2) content of 69,93% and contains minerals needed by soil and plants. This potential cannot be directly utilized due to the acidic nature of volcanic ash which can damage plants. To be used as fertilizer, the process can be accelerated by adding humic acid from chicken manure. So the purpose of this study is to manufacture humic silica fertilizer by combining volcanic ash with humic acid from chicken manure and and  the characteristics of humic silica fertilizer. In this study a method of extracting humic acid from chicken manure was used using sodium hydroxide (NaOH) 0,25 M solution and mixing volcanic ash with humic acid. The results of humic acid extract from chicken manure were then combined with volcanic ash from sinabung. Nutrients from the combination obtained at variation 60:40 with the highest organic C were 1.37%, N total 0.24%, Phosphate 20.64 ppm and Potassium 0.664 me / 100g with pH fertilizer 6 and crumb texture and free neutral which indicates the fertilizer is ready to use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信