使用Mask R-CNN深度学习模型测量越南Nui phhao露天矿的爆炸碎片

IF 1.8 Q3 MINING & MINERAL PROCESSING
Trong Vu, T. Bao, Q. Hoang, Carsten Drebenstetd, Pham Van Hoa, Hoang Hung Thang
{"title":"使用Mask R-CNN深度学习模型测量越南Nui phhao露天矿的爆炸碎片","authors":"Trong Vu, T. Bao, Q. Hoang, Carsten Drebenstetd, Pham Van Hoa, Hoang Hung Thang","doi":"10.1080/25726668.2021.1944458","DOIUrl":null,"url":null,"abstract":"ABSTRACT Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting results and affecting the downstream mining and processing operations in open-pit mines. Image-based methods are widely applied to address the problem but require heavy user interaction and experience. This study deployed a deep learning model Mask R-CNN to develop an automatic measurement method of blast fragmentation. The model was trained using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The trained model reported high average precision scores (Intersection over Union, IoU = 0.5) 92% and 83% for bounding box and segmentation masks, respectively. The results lay a solid technical basis for the automated measurement of blast fragmentation in open-pit mines.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":"4 1","pages":"232 - 243"},"PeriodicalIF":1.8000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Measuring blast fragmentation at Nui Phao open-pit mine, Vietnam using the Mask R-CNN deep learning model\",\"authors\":\"Trong Vu, T. Bao, Q. Hoang, Carsten Drebenstetd, Pham Van Hoa, Hoang Hung Thang\",\"doi\":\"10.1080/25726668.2021.1944458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting results and affecting the downstream mining and processing operations in open-pit mines. Image-based methods are widely applied to address the problem but require heavy user interaction and experience. This study deployed a deep learning model Mask R-CNN to develop an automatic measurement method of blast fragmentation. The model was trained using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The trained model reported high average precision scores (Intersection over Union, IoU = 0.5) 92% and 83% for bounding box and segmentation masks, respectively. The results lay a solid technical basis for the automated measurement of blast fragmentation in open-pit mines.\",\"PeriodicalId\":44166,\"journal\":{\"name\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"4 1\",\"pages\":\"232 - 243\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726668.2021.1944458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2021.1944458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 11

摘要

摘要露天矿爆破破片粒度分布是评价爆破效果和影响下游开采加工作业的关键因素之一。基于图像的方法被广泛应用于解决问题,但需要大量的用户交互和经验。本研究采用深度学习模型Mask R-CNN,开发了一种爆炸破片自动测量方法。该模型使用从越南Nui phhao露天矿真实爆破现场捕获的图像进行训练。训练后的模型对边界框和分割掩码的平均精度得分(Intersection over Union, IoU = 0.5)分别为92%和83%。研究结果为露天矿爆破破片的自动化测量奠定了坚实的技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring blast fragmentation at Nui Phao open-pit mine, Vietnam using the Mask R-CNN deep learning model
ABSTRACT Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting results and affecting the downstream mining and processing operations in open-pit mines. Image-based methods are widely applied to address the problem but require heavy user interaction and experience. This study deployed a deep learning model Mask R-CNN to develop an automatic measurement method of blast fragmentation. The model was trained using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The trained model reported high average precision scores (Intersection over Union, IoU = 0.5) 92% and 83% for bounding box and segmentation masks, respectively. The results lay a solid technical basis for the automated measurement of blast fragmentation in open-pit mines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信