{"title":"最小代价微分对策的价值函数逼近","authors":"Y. Averboukh","doi":"10.35634/vm210402","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":"347 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation of value function of differential game with minimal cost\",\"authors\":\"Y. Averboukh\",\"doi\":\"10.35634/vm210402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":\"347 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm210402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation of value function of differential game with minimal cost
The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.