加权杀戮翘曲积中H_f -超曲面的局部刚性、分岔和稳定性

Pub Date : 2021-01-01 DOI:10.5565/publmat6512113
M. Velásquez, H. D. de Lima, André F. A. Ramalho
{"title":"加权杀戮翘曲积中H_f -超曲面的局部刚性、分岔和稳定性","authors":"M. Velásquez, H. D. de Lima, André F. A. Ramalho","doi":"10.5565/publmat6512113","DOIUrl":null,"url":null,"abstract":"In a weighted Killing warped productMn f ×ρR with warping metric 〈 , 〉M+ ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x : Σn ↪→Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f -Laplacian of Σn. 2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local rigidity, bifurcation, and stability of $H_f$-hypersurfaces in weighted Killing warped products\",\"authors\":\"M. Velásquez, H. D. de Lima, André F. A. Ramalho\",\"doi\":\"10.5565/publmat6512113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a weighted Killing warped productMn f ×ρR with warping metric 〈 , 〉M+ ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x : Σn ↪→Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f -Laplacian of Σn. 2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6512113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6512113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有翘曲度规<,> M+ ρ2 dt的加权Killing翘曲积tmn f ×ρR中,翘曲函数ρ是定义在Mn上的实正函数,且加权函数f不依赖于参数t∈R,我们利用等变分岔理论建立了保证存在分岔时刻的充分条件。或一组开集{Ωγ}γ∈I的局部刚性,其边界∂Ωγ是具有常数加权平均曲率的超曲面。为此,我们分析了某Schrödinger算子的负特征值个数,并研究了其演化过程。进一步,我们用Σn的f -拉普拉斯算子的第一特征值,得到了具有常加权平均曲率的稳定闭超曲面x: Σn“previous→Mn f ×ρ R”的表征。2010数学学科分类:初级:58J55、35B32、53C42;二级:35 p15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local rigidity, bifurcation, and stability of $H_f$-hypersurfaces in weighted Killing warped products
In a weighted Killing warped productMn f ×ρR with warping metric 〈 , 〉M+ ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x : Σn ↪→Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f -Laplacian of Σn. 2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Secondary: 35P15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信