势为四次项的谐振子的时变传播子

J. Boháčik, P. Prešnajder, P. August'in
{"title":"势为四次项的谐振子的时变传播子","authors":"J. Boháčik, P. Prešnajder, P. August'in","doi":"10.1063/5.0018545","DOIUrl":null,"url":null,"abstract":"In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-dependent propagator for an-harmonic oscillator with quartic term in potential\",\"authors\":\"J. Boháčik, P. Prešnajder, P. August'in\",\"doi\":\"10.1063/5.0018545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了条件测度维纳路径积分求值的解析方法。我们考虑了与时间相关的模型参数。我们找到了变量的微分方程,确定了振荡器的谐波和非谐波部分的行为。我们以算子函数的形式给出了结果的非调和部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-dependent propagator for an-harmonic oscillator with quartic term in potential
In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信