{"title":"势为四次项的谐振子的时变传播子","authors":"J. Boháčik, P. Prešnajder, P. August'in","doi":"10.1063/5.0018545","DOIUrl":null,"url":null,"abstract":"In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-dependent propagator for an-harmonic oscillator with quartic term in potential\",\"authors\":\"J. Boháčik, P. Prešnajder, P. August'in\",\"doi\":\"10.1063/5.0018545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-dependent propagator for an-harmonic oscillator with quartic term in potential
In this work, we present the analytical approach to the evaluation of the conditional measure Wiener path integral. We consider the time-dependent model parameters. We find the differential equation for the variable, determining the behavior of the harmonic as well the an-harmonic parts of the oscillator. We present the an-harmonic part of the result in the form of the operator function.