Osama Ahmed Mohamed, Rania Al Khattab, Eman Ahmed Ahmed
{"title":"碱活性矿渣和粉煤灰粘结剂对砂浆吸附性能的影响","authors":"Osama Ahmed Mohamed, Rania Al Khattab, Eman Ahmed Ahmed","doi":"10.1109/ASET53988.2022.9734864","DOIUrl":null,"url":null,"abstract":"This paper presents the finding of a study aimed at evaluating sorptivity of sustainable mortars that use alkali-activated GGBS-fly blends as binders, without Ordinary Portland Cement. Sorptivity, which is a measure of matrix pore-system, is an important indicator of concrete durability. Three binder combinations were successfully activated under room temperature, without heating, namely, GGBS as sole binder, GGBS:fly ash ratio of 3:1, and equal amounts of GGBS and fly ash. The optimum combination of GGBS and fly ash is the one with GGBS:fly ash ratio of 3:1, which exhibited the lowest sorptivity of the three binder combinations when the molarity of the alkaline activator NaOH is 12M. Mortars with GGBS:fly ash ratio of 3:1 retained the lowest sorptivity over mortars that use GGBS as sole binder and the mix with equal amounts of GGBS and fly ash, after 7-, 28-, and 90-day of curing. Mixes prepared using 100% GGBS binder demonstrated decrease in sorptivity as NaOH concentration was increased from 10M to 16M, in increments of 2M. The optimum sodium silicate/sodium hydroxide ratio for mortars using 50% GGBS+50% fly ash as binder is 2.0, which resulted in lower sorptivity compared 1.5 and 2.5.","PeriodicalId":6832,"journal":{"name":"2022 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sorptivity of Mortar with Alkali-Activated Slag and Fly Ash Binders\",\"authors\":\"Osama Ahmed Mohamed, Rania Al Khattab, Eman Ahmed Ahmed\",\"doi\":\"10.1109/ASET53988.2022.9734864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the finding of a study aimed at evaluating sorptivity of sustainable mortars that use alkali-activated GGBS-fly blends as binders, without Ordinary Portland Cement. Sorptivity, which is a measure of matrix pore-system, is an important indicator of concrete durability. Three binder combinations were successfully activated under room temperature, without heating, namely, GGBS as sole binder, GGBS:fly ash ratio of 3:1, and equal amounts of GGBS and fly ash. The optimum combination of GGBS and fly ash is the one with GGBS:fly ash ratio of 3:1, which exhibited the lowest sorptivity of the three binder combinations when the molarity of the alkaline activator NaOH is 12M. Mortars with GGBS:fly ash ratio of 3:1 retained the lowest sorptivity over mortars that use GGBS as sole binder and the mix with equal amounts of GGBS and fly ash, after 7-, 28-, and 90-day of curing. Mixes prepared using 100% GGBS binder demonstrated decrease in sorptivity as NaOH concentration was increased from 10M to 16M, in increments of 2M. The optimum sodium silicate/sodium hydroxide ratio for mortars using 50% GGBS+50% fly ash as binder is 2.0, which resulted in lower sorptivity compared 1.5 and 2.5.\",\"PeriodicalId\":6832,\"journal\":{\"name\":\"2022 Advances in Science and Engineering Technology International Conferences (ASET)\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Advances in Science and Engineering Technology International Conferences (ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASET53988.2022.9734864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET53988.2022.9734864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sorptivity of Mortar with Alkali-Activated Slag and Fly Ash Binders
This paper presents the finding of a study aimed at evaluating sorptivity of sustainable mortars that use alkali-activated GGBS-fly blends as binders, without Ordinary Portland Cement. Sorptivity, which is a measure of matrix pore-system, is an important indicator of concrete durability. Three binder combinations were successfully activated under room temperature, without heating, namely, GGBS as sole binder, GGBS:fly ash ratio of 3:1, and equal amounts of GGBS and fly ash. The optimum combination of GGBS and fly ash is the one with GGBS:fly ash ratio of 3:1, which exhibited the lowest sorptivity of the three binder combinations when the molarity of the alkaline activator NaOH is 12M. Mortars with GGBS:fly ash ratio of 3:1 retained the lowest sorptivity over mortars that use GGBS as sole binder and the mix with equal amounts of GGBS and fly ash, after 7-, 28-, and 90-day of curing. Mixes prepared using 100% GGBS binder demonstrated decrease in sorptivity as NaOH concentration was increased from 10M to 16M, in increments of 2M. The optimum sodium silicate/sodium hydroxide ratio for mortars using 50% GGBS+50% fly ash as binder is 2.0, which resulted in lower sorptivity compared 1.5 and 2.5.