{"title":"将Chebyshev子空间扩展到高维弱Chebyshev子空间及相关结果","authors":"Mansour Alyazidi-Asiry","doi":"10.4172/2168-9679.1000347","DOIUrl":null,"url":null,"abstract":"Let G={g1,…,gn} be an n-dimensional Chebyshev sub-space of C[a, b] such that 1∉G and U=(u0, u1 ,…,un ) be an (n+1)-dimensional subspace of C[a, b] where u0 =1, ui =gi , i=1….. n. Under certain restriction on G, we proved that U is a Chebyshev subspace if and only if it is a Weak Chebyshev subspace. In addition, some other related results are established.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending a Chebyshev Subspace to a Weak Chebyshev Subspace ofHigher Dimension and Related Results\",\"authors\":\"Mansour Alyazidi-Asiry\",\"doi\":\"10.4172/2168-9679.1000347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G={g1,…,gn} be an n-dimensional Chebyshev sub-space of C[a, b] such that 1∉G and U=(u0, u1 ,…,un ) be an (n+1)-dimensional subspace of C[a, b] where u0 =1, ui =gi , i=1….. n. Under certain restriction on G, we proved that U is a Chebyshev subspace if and only if it is a Weak Chebyshev subspace. In addition, some other related results are established.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"41 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending a Chebyshev Subspace to a Weak Chebyshev Subspace ofHigher Dimension and Related Results
Let G={g1,…,gn} be an n-dimensional Chebyshev sub-space of C[a, b] such that 1∉G and U=(u0, u1 ,…,un ) be an (n+1)-dimensional subspace of C[a, b] where u0 =1, ui =gi , i=1….. n. Under certain restriction on G, we proved that U is a Chebyshev subspace if and only if it is a Weak Chebyshev subspace. In addition, some other related results are established.