环和算子代数中广义\(n\) -强Drazin逆的Jacobson引理

Pub Date : 2022-06-28 DOI:10.3336/gm.57.1.01
Yanxun Ren, Lining Jiang
{"title":"环和算子代数中广义\\(n\\) -强Drazin逆的Jacobson引理","authors":"Yanxun Ren, Lining Jiang","doi":"10.3336/gm.57.1.01","DOIUrl":null,"url":null,"abstract":"In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \\(n\\)-strong Drazin inverses in a ring, and prove that \\(1-ac\\) is generalized \\(n\\)-strong Drazin invertible if and only if \\(1-ba\\) is generalized \\(n\\)-strong Drazin invertible, provided that \\(a(ba)^{2}=abaca=acaba=(ac)^{2}a\\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jacobson's lemma for the generalized \\\\(n\\\\)-strong Drazin inverses in rings and in operator algebras\",\"authors\":\"Yanxun Ren, Lining Jiang\",\"doi\":\"10.3336/gm.57.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \\\\(n\\\\)-strong Drazin inverses in a ring, and prove that \\\\(1-ac\\\\) is generalized \\\\(n\\\\)-strong Drazin invertible if and only if \\\\(1-ba\\\\) is generalized \\\\(n\\\\)-strong Drazin invertible, provided that \\\\(a(ba)^{2}=abaca=acaba=(ac)^{2}a\\\\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将关于Drazin逆的Jacobson引理推广到环上的广义\(n\) -强Drazin逆,并证明\(1-ac\)是广义\(n\) -强Drazin可逆的当且仅当\(1-ba\)是广义\(n\) -强Drazin可逆,只要\(a(ba)^{2}=abaca=acaba=(ac)^{2}a\)。此外,还研究了左、右Fredholm算子的Jacobson引理,以及可逆性谱性质一致、Fredholm和指标谱性质一致的引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Jacobson's lemma for the generalized \(n\)-strong Drazin inverses in rings and in operator algebras
In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \(n\)-strong Drazin inverses in a ring, and prove that \(1-ac\) is generalized \(n\)-strong Drazin invertible if and only if \(1-ba\) is generalized \(n\)-strong Drazin invertible, provided that \(a(ba)^{2}=abaca=acaba=(ac)^{2}a\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信