大型外包数据块的可重复遗忘洗牌

Zhilin Zhang, Ke Wang, Weipeng Lin, A. Fu, R. C. Wong
{"title":"大型外包数据块的可重复遗忘洗牌","authors":"Zhilin Zhang, Ke Wang, Weipeng Lin, A. Fu, R. C. Wong","doi":"10.1145/3357223.3362732","DOIUrl":null,"url":null,"abstract":"As data outsourcing becomes popular, oblivious algorithms have raised extensive attentions. Their control flow and data access pattern appear to be independent of the input data they compute on. Oblivious algorithms, therefore, are especially suitable for secure processing in outsourced environments. In this work, we focus on oblivious shuffling algorithms that aim to shuffle encrypted data blocks outsourced to a cloud server without disclosing the actual permutation of blocks to the server. Existing oblivious shuffling algorithms suffer from issues of heavy communication cost and client computation cost for shuffling large-sized blocks because all outsourced blocks must be downloaded to the client for shuffling or peeling off extra encryption layers. To help eliminate this void, we introduce the \"repeatable oblivious shuffling\" notation that avoids moving blocks to the client and thus restricts the communication and client computation costs to be independent of the block size. For the first time, we present a concrete construction of repeatable oblivious shuffling using additively homomorphic encryption. The comprehensive evaluation of our construction shows its effective usability in practice for shuffling large-sized blocks.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Repeatable Oblivious Shuffling of Large Outsourced Data Blocks\",\"authors\":\"Zhilin Zhang, Ke Wang, Weipeng Lin, A. Fu, R. C. Wong\",\"doi\":\"10.1145/3357223.3362732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As data outsourcing becomes popular, oblivious algorithms have raised extensive attentions. Their control flow and data access pattern appear to be independent of the input data they compute on. Oblivious algorithms, therefore, are especially suitable for secure processing in outsourced environments. In this work, we focus on oblivious shuffling algorithms that aim to shuffle encrypted data blocks outsourced to a cloud server without disclosing the actual permutation of blocks to the server. Existing oblivious shuffling algorithms suffer from issues of heavy communication cost and client computation cost for shuffling large-sized blocks because all outsourced blocks must be downloaded to the client for shuffling or peeling off extra encryption layers. To help eliminate this void, we introduce the \\\"repeatable oblivious shuffling\\\" notation that avoids moving blocks to the client and thus restricts the communication and client computation costs to be independent of the block size. For the first time, we present a concrete construction of repeatable oblivious shuffling using additively homomorphic encryption. The comprehensive evaluation of our construction shows its effective usability in practice for shuffling large-sized blocks.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着数据外包的普及,遗忘算法引起了广泛的关注。它们的控制流和数据访问模式似乎独立于它们所计算的输入数据。因此,遗忘算法特别适合于外包环境中的安全处理。在这项工作中,我们专注于遗忘洗牌算法,该算法旨在洗牌外包给云服务器的加密数据块,而不向服务器披露块的实际排列。由于所有外包块都必须下载到客户端进行洗牌或剥离额外的加密层,现有的无关洗牌算法在洗牌大块时存在通信成本和客户端计算成本高的问题。为了帮助消除这个空白,我们引入了“可重复遗忘洗牌”符号,避免将块移动到客户端,从而限制通信和客户端计算成本与块大小无关。本文首次提出了一种使用加性同态加密的可重复遗忘洗牌的具体构造。综合评价表明,该结构在大型块的洗牌实践中具有有效的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repeatable Oblivious Shuffling of Large Outsourced Data Blocks
As data outsourcing becomes popular, oblivious algorithms have raised extensive attentions. Their control flow and data access pattern appear to be independent of the input data they compute on. Oblivious algorithms, therefore, are especially suitable for secure processing in outsourced environments. In this work, we focus on oblivious shuffling algorithms that aim to shuffle encrypted data blocks outsourced to a cloud server without disclosing the actual permutation of blocks to the server. Existing oblivious shuffling algorithms suffer from issues of heavy communication cost and client computation cost for shuffling large-sized blocks because all outsourced blocks must be downloaded to the client for shuffling or peeling off extra encryption layers. To help eliminate this void, we introduce the "repeatable oblivious shuffling" notation that avoids moving blocks to the client and thus restricts the communication and client computation costs to be independent of the block size. For the first time, we present a concrete construction of repeatable oblivious shuffling using additively homomorphic encryption. The comprehensive evaluation of our construction shows its effective usability in practice for shuffling large-sized blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信