具有良好贝氏体性能工件热处理原型装置的研制

IF 0.3 Q4 THERMODYNAMICS
S. Wagner, T. Streng
{"title":"具有良好贝氏体性能工件热处理原型装置的研制","authors":"S. Wagner, T. Streng","doi":"10.1515/htm-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract In vehicle construction, components with high tensile strengths are used, especially in the chassis area. At the same time, these components must have high toughness and be insensitive to cracking. For this purpose, hardened and tempered but also salt-bainitized components are used. The associated usual process chain after steel production consists of forming processes with subsequent cooling of the forging blanks and subsequent heat treatment with renewed heating to set the required material properties. From an energy point of view, heat treatment from the forging heat is desirable, which in addition to shortening the process chain is also associated with a reduction in CO2 emissions. A prototype system for controlled bainitization has been developed, which implements the heat treatment immediately after hot forming by utilizing the still existing forming temperature. Here, a controlled spray field generates both a quenching and an isothermal holding phase. Various sensors generate input variables to cool the workpieces in a controlled manner. This paper gives an overview of the system technology, realized cooling curves and the resulting hardness.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Prototype Plant for the Heat Treatment of Workpieces with Preferably Bainitic Properties\",\"authors\":\"S. Wagner, T. Streng\",\"doi\":\"10.1515/htm-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In vehicle construction, components with high tensile strengths are used, especially in the chassis area. At the same time, these components must have high toughness and be insensitive to cracking. For this purpose, hardened and tempered but also salt-bainitized components are used. The associated usual process chain after steel production consists of forming processes with subsequent cooling of the forging blanks and subsequent heat treatment with renewed heating to set the required material properties. From an energy point of view, heat treatment from the forging heat is desirable, which in addition to shortening the process chain is also associated with a reduction in CO2 emissions. A prototype system for controlled bainitization has been developed, which implements the heat treatment immediately after hot forming by utilizing the still existing forming temperature. Here, a controlled spray field generates both a quenching and an isothermal holding phase. Various sensors generate input variables to cool the workpieces in a controlled manner. This paper gives an overview of the system technology, realized cooling curves and the resulting hardness.\",\"PeriodicalId\":44294,\"journal\":{\"name\":\"HTM-Journal of Heat Treatment and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HTM-Journal of Heat Treatment and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htm-2021-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在汽车结构中,需要使用高抗拉强度的部件,特别是在底盘区域。同时,这些构件必须具有高韧性,对开裂不敏感。为此目的,硬化和回火,但也盐贝氏体化组件使用。钢铁生产后相关的通常工艺链包括成形过程,随后对锻造坯进行冷却,随后进行热处理,重新加热以确定所需的材料性能。从能源的角度来看,锻造热的热处理是可取的,这除了缩短工艺链外,还与减少二氧化碳排放有关。开发了一种受控贝氏化原型系统,利用残余的成形温度在热成形后立即进行热处理。在这里,一个受控的喷雾场同时产生淬火和等温保温阶段。各种传感器产生输入变量,以受控的方式冷却工件。本文概述了该系统的技术、实现的冷却曲线和得到的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Prototype Plant for the Heat Treatment of Workpieces with Preferably Bainitic Properties
Abstract In vehicle construction, components with high tensile strengths are used, especially in the chassis area. At the same time, these components must have high toughness and be insensitive to cracking. For this purpose, hardened and tempered but also salt-bainitized components are used. The associated usual process chain after steel production consists of forming processes with subsequent cooling of the forging blanks and subsequent heat treatment with renewed heating to set the required material properties. From an energy point of view, heat treatment from the forging heat is desirable, which in addition to shortening the process chain is also associated with a reduction in CO2 emissions. A prototype system for controlled bainitization has been developed, which implements the heat treatment immediately after hot forming by utilizing the still existing forming temperature. Here, a controlled spray field generates both a quenching and an isothermal holding phase. Various sensors generate input variables to cool the workpieces in a controlled manner. This paper gives an overview of the system technology, realized cooling curves and the resulting hardness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信